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1.1: Objective of this manual

1. Introduction

1.1 Objective of this manual

This Theory and Modeling Guide serves two purposes:

» To provide a concise summary of the theoretical basis of
Advanced Nonlinear Solution as it applies to Solution 601 and
Solution 701. This includes the finite element procedures used,
the elements and the material models. The depth of coverage of
these theoretical issues is such that the user can effectively use
Solutions 601 and 701. A number of references are provided
throughout the manual which give more details on the theory
and procedure used in the program. These references should be
consulted for further details. Much reference is made however
to the book Finite Element Procedures (ref. KIB).

ref.  K.J. Bathe, Finite Element Procedures, Prentice Hall,
Englewood Cliffs, NJ, 1996.

» To provide guidelines for practical and efficient modeling using
Advanced Nonlinear Solution. These modeling guidelines are
based on the theoretical foundation mentioned above, and the
capabilities and limitations of the different procedures,
elements, material models and algorithms available in the
program. NX Nastran commands and parameter settings needed
to activate different analysis features are frequently mentioned.

It is assumed that the user is familiar with NX Nastran
fundamentals pertaining to linear analysis. This includes general
knowledge of the NX Nastran structure, commands, elements,
materials, and loads.

We intend to update this report as we continue our work on
Advanced Nonlinear Solution. If you have any suggestions
regarding the material discussed in this manual, we would be glad
to hear from you.
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Chapter 1: Introduction

1.2 Overview of Advanced Nonlinear Solution

e Advanced Nonlinear Solution is a Nastran solution option
focused on nonlinear problems. It is capable of treating geometric
and material nonlinearities as well as nonlinearities resulting from
contact conditions. State-of-the-art formulations and solution
algorithms are used which have proven to be reliable and efficient.

e Advanced Nonlinear Solution supports static and implicit
dynamic nonlinear analysis via Solution 601, and explicit dynamic
analysis via Solution 701. Solution 601 also supports heat transfer
analysis and coupled structural heat transfer analysis.

e Advanced Nonlinear Solution supports many of the standard
Nastran commands and several commands specific to Advanced
Nonlinear Solution that deal with nonlinear features such as
contact. The NX Nastran Quick Reference Guide provides more
details on the Nastran commands and entries that are supported in
Advanced Nonlinear Solution.

e Advanced Nonlinear Solution supports many of the commonly
used features of linear Nastran analysis. This includes most of the
elements, materials, boundary conditions, and loads. Some of these
features are modified to be more suitable for nonlinear analysis,
and many other new features are added that are needed for
nonlinear analysis.

e The elements available in Advanced Nonlinear Solution can be
broadly classified into rods, beams, 2-D solids, 3-D solids, shells,
scalar elements and rigid elements. The formulations used for these
elements have proven to be reliable and efficient in linear, large
displacement, and large strain analyses. Chapter 2 provides more
details on the elements.

e The material models available in Advanced Nonlinear Solution
are elastic isotropic, elastic orthotropic, hyperelastic, plastic
isotropic, gasket, and shape memory alloy. Thermal and creep
effects can be added to some of these materials. Chapter 3 provides
more details on these material models.
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1.2: Overview of Advanced Nonlinear Solution

e Advanced Nonlinear Solution has very powerful features for
contact analysis. These include several contact algorithms and
different contact types such as single-sided contact, double-sided
contact, self-contact, and tied contact. Chapter 4 provides more
details on contact.

e Loads, boundary conditions and constraints are addressed in
Chapter 5. Time varying loads and boundary conditions are
common to nonlinear analysis and their input in Advanced
Nonlinear Solution is slightly different from other Nastran
solutions, as discussed in Chapter 5.

e Solution 601 of Advanced Nonlinear Solution currently
supports two nonlinear structural analysis types: static and implicit
transient dynamic. Details on the formulations used are provided in
Chapter 6. Other features of nonlinear analysis, such as time
stepping, load displacement control (arc length method), line
search, and available solvers are also discussed in Chapter 6.

e Solution 701 of Advanced Nonlinear Solution is dedicated to
explicit transient dynamic analysis. Details on the formulations
used are provided in Chapter 7. Other features of explicit analysis,
such as stability and time step estimation are also discussed in
Chapter 7.

e Solution 601 of Advanced Nonlinear Solution also supports two
heat transfer or coupled structural heat transfer analysis types. The
first type 153 is for static structural with steady state heat transfer,
or just steady state heat transfer. The second analysis type 159 is
for cases when either the structural or heat transfer models are
transient (dynamic). This type can also be used for just transient
heat transfer analysis. Details of the heat transfer analysis are
provided in Chapter 8, and details of the thermo-mechanical
coupled (TMC) analysis are provided in Chapter 9.

e Additional capabilities present in Advanced Nonlinear Solution
such as restarts, stiffness stabilization, initial conditions, and
parallel processing are discussed in Chapter 10.

Advanced Nonlinear Solution — Theory and Modeling Guide 3



Chapter 1: Introduction

e Most of the global settings controlling the structural solutions in
Advanced Nonlinear Solution are provided in the NXSTRAT bulk
data entry. This includes parameters that control the solver
selection, time integration values, convergence tolerances, contact
settings, etc. An explanation of these parameters is found in the NX
Nastran Quick Reference Guide.

o Similarly, most of the global settings controlling the heat
transfer or coupled solutions in Advanced Nonlinear Solution are
provided in the TMCPARA bulk data entry.

1.2.1 Choosing between Solutions 601 and 701

ref. KJB
Section 9.2

e The main criterion governing the selection of the implicit
(Solution 601) or explicit (Solution 701) formulations is the time
scale of the solution.

e The implicit method can use much larger time steps since it is
unconditionally stable. However, it involves the assembly and
solution of a system of equations, and it is iterative. Therefore, the
computational time per load step is relatively high. The explicit
method uses much smaller time steps since it is conditionally
stable, meaning that the time step for the solution has to be less
than a certain critical time step, which depends on the smallest
element size and the material properties. However, it involves no
matrix solution and is non-iterative. Therefore, the computational
time per load step is relatively low.

¢ For both linear and nonlinear static problems, the implicit
method is the only option.

o For heat transfer and coupled structural heat transfer problems,
the implicit method is the only option.

e For slow-speed dynamic problems, the solution time spans a
period of time considerably longer than the time it takes the wave
to propagate through an element. The solution in this case is
dominated by the lower frequencies of the structure. This class of
problems covers most structural dynamics problems, certain metal
forming problems, crush analysis, earthquake response and
biomedical problems. When the explicit method is used for such
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problems the resulting number of time steps will be excessive,
unless mass-scaling is applied, or the loads are artificially applied
over a shorter time frame. No such modifications are needed in the
implicit method. Hence, the implicit method is the optimal choice.

¢ For high-speed dynamic problems, the solution time is
comparable to the time required for the wave to propagate through
the structure. This class of problems covers most wave propagation
problems, explosives problems, and high-speed impact problems.
For these problems, the number of steps required with the explicit
method is not excessive. If the implicit method uses a similar time
step it will be much slower and if it uses a much larger time step it
will introduce other solution errors since it will not be capturing the
pertinent features of the solution (but it will remain stable). Hence,
the explicit method is the optimal choice.

¢ A large number of dynamics problems cannot be fully classified
as either slow-speed or high-speed dynamic. This includes many
crash problems, drop tests and metal forming problems. For these
problems both solution methods are comparable. However,
whenever possible (when the time step is relatively large and there
are no convergence difficulties) we recommend the use of the
implicit solution method.

¢ Note that the explicit solution provided in Solution 701 does not
use reduced integration with hour-glassing. This technique reduces
the computational time per load step. However, it can have
detrimental effect on the accuracy and reliability of the solution.

e Since the explicit time step size depends on the length of the
smallest element, one excessively small element will reduce the
stable time step for the whole model. Mass-scaling can be applied
to these small elements to increase their stable time step. The
implicit method is not sensitive to such small elements.

¢ Since the explicit time step size depends on the material
properties, a nearly incompressible material will also significantly
reduce the stable time step. The compressibility of the material can
be increased in explicit analysis to achieve a more acceptable
solution time. The implicit method is not as sensitive to highly
incompressible materials (provided that a mixed formulation is
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used).

e Higher order elements such as the 10-node tetrahederal, 20 and
27 node brick elements are only available in implicit analysis. They
are not used in explicit analysis because no suitable mass-lumping
technique is available for these elements.

e Model nonlinearity is another criterion influencing the choice
between implicit and explicit solutions. As the level of nonlinearity
increases, the implicit method requires more time steps, and each
time step may require more iterations to converge. In some cases,
no convergence is reached. The explicit method however, is less
sensitive to the level of nonlinearity.

Note that when the implicit method fails it is usually due to non-
convergence within a time step, while when the explicit method
fails it is usually due to a diverging solution.

e The memory requirements is another factor. For the same mesh,
the explicit method requires less memory since it does not store a
stiffness matrix and does not require a solver. This can be
significant for very large problems.

¢ Since Advanced Nonlinear Solution handles both Solution 601
and Solution 701 with very similar inputs, the user can in many
cases restart from one analysis type to the other. This capability can
be used, for example, to perform implicit springback analysis
following an explicit metal forming simulation, or to perform an
explicit analysis following the implicit application of a gravity
load.

It can also be used to overcome certain convergence difficulties
in implicit analyses. A restart from the last converged implicit
solution to explicit can be performed, then, once that stage is
passed, another restart from explicit to implicit can be performed to
proceed with the rest of the solution.
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1.2.2 Units

In Advanced Nonlinear Solution, it is important to enter all
physical quantities (lengths, forces, masses, times, etc.) using a
consistent set of units. For example, when working with the SI
system of units, enter lengths in meters, forces in Newtons, masses
in kg, times in seconds. When working with other systems of units,
all mass and mass-related units must be consistent with the length,
force and time units. For example, in the USCS system (USCS is
an abbreviation for the U.S. Customary System), when the length
unit is inches, the force unit is pound and the time unit is second,
the mass unit is Ib-sec’/in, not Ib.

Rotational degrees of freedom are always expressed in radians.

1.3 Structure of Advanced Nonlinear Solution

e The input data for Advanced Nonlinear Solution follows the
standard Nastran format consisting of the following 5 sections:

Nastran Statement (optional)

File Management Statements (optional)
Executive control Statements

Case Control Statements

Bulk Data Entries

Nk W=

The first two sections do not involve any special treatment in
Advanced Nonlinear Solution. The remaining three sections
involve some features specific to Advanced Nonlinear Solution, as
described below.

1.3.1 Executive Control
¢ Solution 601 is invoked by selecting solution sequence 601 in
the SOL Executive Control Statement. This statement has the

following form:

SOL 601,N

Advanced Nonlinear Solution — Theory and Modeling Guide 7



Chapter 1: Introduction

where N determines the specific analysis type selected by Solution
601.

Currently, static and direct time-integration implicit dynamic
structural analyses are available as shown in Table 1.3-1. In
addition, two analysis types are available for thermal or coupled
thermal-mechanical problems.

e Solution 701 is invoked by selecting solution sequence 701 in
the SOL Executive Control Statement. This statement has the
following form:

SOL 701
and is used for explicit dynamic analyses.

e In many aspects Solution 601,106 is similar to Solution 106 for
nonlinear static analysis. However, it uses the advanced nonlinear
features of Solution 601. Likewise, Solution 601,129 is similar to
Solution 129 for nonlinear transient response analysis. Solution 701
provides an alternative to the implicit nonlinear dynamic analysis
of Solution 601,129.

N Solution 601 Analysis Type
106 Static
129 Transient dynamic

Steady state thermal + static
153

structural

Transient thermal + dynamic
159 1

structural

"N = 159 also allows either of the structure or the thermal parts to
be static or steady state.

Table 1.3-1: Solution 601 Analysis Types
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1.3.2 Case Control

e The Case Control Section supports several commands that
control the solution, commands that select the input loads,
temperatures and boundary conditions, commands that select the
output data and commands that select contact sets. Table 1.3-2 lists
the supported Case Control Commands.

Case Control Command

Description

Solution control

SUBCASE!
TSTEP?
ANALYSIS?

Subcase delimiter
Time step set selection

Subcase analysis type solution

Loads and boundary conditions

LOAD Static load set selection

DLOAD* Dynamic load set selection

SPC Single-point constraint set selection

MPC Multipoint constraint set selection

TEMPERATURE® Temperature set selection
TEMPERATURE(LOAD) Temperature load
TEMPERATURE(INITIAL) Initial temperature

IC Transient initial condition set selection

BGSET Glue contact set selection

BOLTLD Bolt preload set selection

DMIG related

B2GG Selects direct input damping matrices

K2GG Selects direct input stiffness matrices

M2GG Selects direct input mass matrices

Element related

EBDSET

Element birth/death selection

Table 1.3-2: Case Control Commands
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Output related

SET Set definition
DISPLACEMENT Displacement output request
VELOCITY Velocity output request
ACCELERATION Acceleration output request
STRESS Element stress/strain output request
SPCFORCES Reaction force output request
GPFORCE Nodal force output request
GKRESULTS Gasket results output request
TITLE Output title
SHELLTHK Shell thickness output request
THERMAL Temperature output request
FLUX Heat transfer output request
Contact related
BCSET Contact set selection
BCRESULTS Contact results output request
Notes:

1. Only one subcase is allowed in structural analysis Advanced Nonlinear
Solution (N = 106, 129). In coupled TMC analyses (N = 153, 159), two
subcases are required, one for the structural and one for the thermal sub-
model.

2. TSTEP is used for all analysis types in Advanced Nonlinear Solution. In
explicit analysis with automatic time stepping it is used for determining the
frequency of output of results.

3. Supports ANALYSIS = STRUC and ANALYSIS = HEAT for SOL 601,153
and SOL 601,159.

4. DLOAD is used for time-varying loads for both static and transient dynamic
analyses.

5. TEMPERATURE, TEMPERATURE(BOTH) and TEMPERATURE(MAT)
are not allowed for Advanced Nonlinear Solution. Use
TEMPERATURE(INIT) and TEMPERATURE(LOAD) instead.

Table 1.3-2: Case Control Commands (continued)
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1.3.3 Bulk Data

e The Bulk Data section contains all the details of the model.

Advanced Nonlinear Solution supports most of the commonly used
Bulk Data entries. In many cases, restrictions are imposed on some
of the parameters in a Bulk Data entry, and in some other cases,
different interpretation is applied to some of the parameters to

make them more suitable for nonlinear analysis. Several Bulk Data
entries are also specific to Advanced Nonlinear Solution.

Table 1.3-3 lists the supported Bulk Data entries.

Element Connectivity

CBAR CMASSI1 CPLSTS3 CQUADX CTRAX3
CBEAM CMASS2 CPLSTS4 CQUADX4 | CTRAX6
CBUSH CONM1 CPLSTS6 CQUADXS8 | CTETRA
CBUSHID CONM2 CPLSTSS8 CROD RBAR
CDAMP1 CONROD CPYRAM CTRIA3 RBE2
CDAMP2 CPENTA CQUAD4 CTRIA6 RBE3
CELASI1 CPLSTN3 CQUADS CTRIAR
CELAS2 CPLSTN4 CQUADR CTRIAX
CGAP CPLSTNG6
CHEXA CPLSTNS
Element Properties
EBDSET PBCOMP PCOMP PLPLANE PROD
EBDADD PBEAM PDAMP PLSOLID PSHELL
PBAR PBEAML PELAS PMASS PSOLID
PBARL PBUSH PELAST PPLANE

PBUSHID PGAP

Table 1.3-3: Bulk Data entries supported by Advanced Nonlinear Solution

Advanced Nonlinear Solution — Theory and Modeling Guide
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Material Properties

CREEP MATS MATHE MATTI1 MATTC
MATI1 MAT9 MATHEV | MATT2 MATVE
MAT2 MATI11 MATHEM | MATT3 PCONV
MAT3 MATCID MATHP MATT4 RADM
MAT4 MATG MATSI1 MATTS RADMT
MATS MATSMA | MATTS8 TABLEM1
MATT9 TABLESI1

MATTI1 TABLEST

Loads, Boundary Conditions and Constraints

BGSET GRAV MPC PLOADX1 TABLEDI1
BOLT LOAD MPCADD RFORCE TABLED2
BOLTFOR MOMENT PLOAD SPC TEMP
DLOAD MOMENT1 PLOADI1 SPC1 TEMPD
FORCE MOMENT?2 PLOAD2 SPCADD TIC
FORCE1 PLOAD4 SPCD TLOADI1
FORCE2 PLOADEI1

Heat Transfer Loads and Boundary Conditions

BDYOR CONV QHBDY TEMPBC

CHBDYE QBDY1 QVOL

CHBDYG QBDY2 RADBC

Contact

BCPROP BCRPARA BCTPARA | BLSEG BSURFS

BCPROPS BCTADD BCTSET BSURF

Table 1.3-3: Bulk Data entries supported by Advanced Nonlinear Solution
(continued)

12 Advanced Nonlinear Solution — Theory and Modeling Guide



1.3: Structure of Advanced Nonlinear Solution

Direct Matrix Input

DMIG

Other Commands

CORDIC CORD1S
CORDIR CORD2C

CORD2R
CORD2S

GRID
NXSTRAT!

PARAM?
TMCPARA®
TSTEP*

Notes:

1. NXSTRAT is the main entry defining the solution settings for Advanced

Nonlinear Solution.

2. Only a few PARAM variables are supported. Most are replaced by

NXSTRAT variables.

3. TMCPARA is the main entry defining the solution settings for heat

transfer and TMC models.

4. TSTEP is used for both static and dynamic analyses.

Table 1.3-3: Bulk Data entries supported by Advanced Nonlinear Solution

(continued)

1.3.4 Terminology used in Advanced Nonlinear Solution

The terminology used in Advanced Nonlinear Solution is for the most
part the same as that used in other Nastran documents.

Advanced Nonlinear Solution — Theory and Modeling Guide
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2. Elements

e Advanced Nonlinear Solution supports most of the commonly
used elements in linear Nastran analyses. Some of these elements
are modified to be more suitable for nonlinear analysis.

e The Advanced Nonlinear Solution elements are generally
classified as line, surface, solid, scalar, or rigid elements.

» Line elements are divided into 2 main categories — rod
elements and beam elements. Rod elements only possess axial
stiffness, while beam elements also possess bending, shear and
torsional stiffness.

» Surface elements are also divided into 2 main categories — 2-
D solids and shell elements.

» 3-D solid elements are the only solid elements in Advanced
Nonlinear Solution.

» The scalar elements are spring, mass and damper elements.

» R-type elements impose constraints between nodes, such as
rigid elements.

» Other element types available in Advanced Nonlinear
Solution are the gap element, concentrated mass element, and
the bushing element.

o This chapter outlines the theory behind the different element
classes, and also provides details on how to use the elements in
modeling. This includes the materials that can be used with each
element type, their applicability to large displacement and large
strain problems, their numerical integration, etc.

e More detailed descriptions of element input and output are
provided in several other manuals, including:

- NX Nastran Reference Manual
- NX Nastran Quick Reference Guide
- NX Nastran DMAP Programmer’s Guide

14
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e Table 2-1 below shows the different elements available in
Advanced Nonlinear Solution, and how they can be obtained from
Nastran element connectivity and property 1D entries. Restrictions
related to Solution 701 are noted.

Element Property ID Entry Advanced Nonlinear
Connectivity Entry Solution Element
Rod Elements

CROD PROD 2-node rod element
CONROD None 2-node rod element

Beam Elements

CBAR PBAR, PBARL 2-node beam element
CBEAM PBEAM, PBEAML, 2-node beam element
PBCOMP

Shell Elements’

CQUAD4 PSHELL', PCOMP? 4-node quadrilateral shell
element

CQUADS PSHELL', PCOMP? 4-node to 8-node quadrilateral
shell element

CQUADR PSHELL, PCOMP? 4-node quadrilateral shell
element

CTRIA3 PSHELL', PCOMP? 3-node triangular shell
element

CTRIAG6 PSHELL', PCOMP? 3-node to 6-node triangular
shell element

CTRIAR PSHELL, PCOMP? 3-node triangular shell

element

Table 2-1: Elements available in Advanced Nonlinear Solution
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2D Solid Elements*

CPLSTN3

CPLSTN4

CPLSTN6

CPLSTNS

CPLSTS3

CPLSTS4

CPLSTS6

CPLSTSS8

CQUAD

CQUAD4

CQUADS

CTRIA3

CTRIAG6

PPLANE, PLPLANE
PPLANE, PLPLANE
PPLANE, PLPLANE
PPLANE, PLPLANE
PPLANE, PLPLANE
PPLANE, PLPLANE
PPLANE, PLPLANE
PPLANE, PLPLANE

PLPLANE

PLPLANE, PSHELL'
PLPLANE, PSHELL'
PLPLANE, PSHELL'

PLPLANE, PSHELL'

3-node triangular 2D plane
strain element

4-node quadrilateral 2D plane
strain element

6-node triangular 2D plane
strain element

8-node quadrilateral 2D plane
strain element

3-node triangular 2D plane
stress element

4-node quadrilateral 2D plane
stress element

6-node triangular 2D plane
stress element

8-node quadrilateral 2D plane
stress element

4-node to 9-node quadrilateral
2D plane strain element with
hyperelastic material

4-node quadrilateral 2D plane
strain element

4-node to 8-node 2D plane
strain element

3-node triangular 2D plane
strain element

3-node to 6-node triangular
2D plane strain element

Table 2-1: Elements available in Advanced Nonlinear Solution (continued)

16
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2D Solid Elements (continued)

CQUADX

CTRIAX

CQUADX4

CQUADXS

CTRAX3

CTRAXG6

PLPLANE

PLPLANE

PSOLID, PLSOLID

PSOLID, PLSOLID

PSOLID, PLSOLID

PSOLID, PLSOLID

4-node to 9-node quadrilateral
2D axisymmetric element
with hyperelastic material

3-node to 6-node triangular
2D axisymmetric element
with hyperelastic material

4-node quadrilateral 2D
axisymmetric element

8-node quadrilateral 2D
axisymmetric element

3-node triangular 2D
axisymmetric element

6-node triangular 2D
axisymmetric element

3D Solid Elements’

CHEXA

CPENTA

CTETRA

CPYRAM

PSOLID, PLSOLID

PSOLID, PLSOLID

PSOLID, PLSOLID

PSOLID, PLSOLID

8-node to 20-node brick 3D
solid element

6-node to 15-node wedge 3D
solid element

4-node to 10-node tetrahedral
3D solid element

5-node to 13-node pyramid
3D solid element

Scalar Elements

CELASI; CELAS2

CDAMP1; CDAMP2
CMASS1; CMASS2

PELAS; None
PDAMP; None
PMASS; None

Spring element
Damper element

Mass element

Table 2-1: Elements available in Advanced Nonlinear Solution (continued)
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R-Type Elements

RBAR None Single rigid element

RBE2 None Multiple rigid elements

RBE3 None Interpolation constraint
element

Other Elements

CGAP PGAP 2-node gap element

CONM1, CONM2 None Concentrated mass element

CBUSHI1D PBUSHI1D Rod Type Spring-and-Damper
Connection

CBUSH PBUSH Generalized Spring-and-

Damper Connection

Notes:

1. CQUAD4, CQUADS, CTRIA3, and CTRIA6 with a PSHELL property ID are
treated as either 2D plane strain elements or shell elements depending on the
MID2 parameter.

2. Elements with a PCOMP property ID entry are treated as multi-layered shell
elements. These elements are not supported in Solution 701.

3. Only 3-node and 4-node single layer shells are supported in Solution 701.

4. 2-D solid elements are not supported in Solution 701.

5. Only 4-node tetrahedral, 6-node wedge and 8-node brick 3-D solid elements are
supported in Solution 701.

Table 2-1: Elements available in Advanced Nonlinear Solution (continued)
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e Table 2-2 lists the acceptable combination of elements and
materials for Solution 601. Thermal effects in this table imply
temperature dependent material properties. Thermal strains are
usually accounted for in isothermal material models.

Rod Beam Shell 2D Solid | 3D Solid
Elastic isotropic v v v v v
...Thermal v v v v
...Creep 4 v v v
Elastic orthotropic v v v
...Thermal v v v
Plastic isotropic v! v! 4 4 v
...Thermal v v v v
...Creep 4 v v v
Hyperelastic v v
Gasket v
Nonlingar elastic v v v v
1sotropic
Shape memory
alloy
Viscoelastic
Note:

1. No thermal strains in these plastic isotropic material models.

Table 2-2: Element and material property combinations in Solution 601
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e Table 2-3 lists the acceptable combination of elements and
materials for Solution 701. Thermal effects in this table imply
temperature dependent material properties. Thermal strains are
usually accounted for in isothermal material models. Note that
interpolation of temperature dependent material properties is only
performed at the start of the analysis in Solution 701.

Rod Beam Shell 2D Solid | 3D Solid

Elastic isotropic v v v v
...Thermal 4 v v
...Creep

Elastic orthotropic v v
...Thermal v v

Plastic isotropic v! v! v v
...Thermal v v v
...Creep

Hyperelastic v

Gasket v

Nonlinear elastic v

isotropic

Shape memory

alloy

Viscoelastic

Note:

1. No thermal strains in these plastic isotropic material models.

Table 2-3: Element and material property combinations in Solution 701
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2.1 Rod elements

2.1.1 General considerations

e Rod elements are generated using the CONROD and CROD

entries. These line elements only possess axial stiffness. Fig. 2.1-1

shows the nodes and degrees of freedom of a rod element. Note

that the rod element only has 2 nodes.

zZ

(u, v, w) are nodal translational
degrees of freedom

Figure 2.1-1: Rod element

ref. KJB e Note that the only force transmitted by the rod element is the

Sections 5.3.1, longitudinal force as illustrated in Fig. 2.1-2. This force is constant

6.3.3  throughout the element.
z et

area A
c

Stress constant over
P cross-sectional area

Figure 2.1-2: Stresses and forces in rod elements

Advanced Nonlinear Solution — Theory and Modeling Guide
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2.1.2 Material models and formulations

e See Tables 2-2 and 2-3 for a list of the material models that are
compatible with rod elements.

e The rod elements can be used with small displacement/small
strain or large displacement/small strain kinematics. In the small
displacement case, the displacements and strains are assumed
infinitesimally small. In the large displacement case, the
displacements and rotations can be very large. In all cases, the
cross-sectional area of the element is assumed to remain
unchanged, and the strain is equal to the longitudinal displacement
divided by the original length.

All of the compatible material models listed in Tables 2-2 and
2-3 can be used with both the small and large displacement
formulations.

e Thermal strains are not available in the isotropic plasticity
material model for rod elements. Thermal strains can be obtained
by switching to a temperature dependent isotropic plasticity
material model.

2.1.3 Numerical integration

e The rod elements use one point Gauss integration.

2.1.4 Mass matrices

e The consistent mass matrix is calculated using Eq. (4.25) in ref.
KIJB, p. 165.

e The lumped mass matrix for the rod element is formed by
dividing the element’s mass M among its nodes. The mass assigned

L,
to each node is M - [f) , in which L = total element length, ¢, =
fraction of the total element length associated with element node i
L L
(i.e., for the 2-node rod element, ¢, = Py and /, = Py )- The

element has no rotational mass.

22
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e The same lumped mass matrix is used for both Solution 601 and
Solution 701.

2.1.5 Heat transfer capabilities

e The rod element supports 1-D heat conductivity, heat capacity
and heat generation features in heat transfer and coupled TMC
analyses.

e One temperature degree of freedom is present at each node.

e The heat capacity matrix can be calculated based on a lumped or
consistent heat capacity assumption.

e In the lumped heat capacity assumption, each node gets a heat
capacity of cpAL/2.

e This element can also be used as a general thermal link element
between any two points in space.

2.2 Beam elements

e Beam elements are generated using the CBAR and CBEAM
entries. The properties for a CBAR entry are defined using PBAR
or PBARL entries while the properties for CBEAM are defined
using the PBEAM, PBEAML or PBCOMP entries. See Tables 2-2
and 2-3 for a list of the material models that are compatible with
the beam element.

e The beam element is a 2-node Hermitian beam with a constant
cross-section and 6 degrees of freedom at each node as shown in
Fig. 2.2-1. The r-direction in the local coordinate system is along
the line connecting the nodes GA and GB. The s-direction is based
on the v vector defined in the CBAR or CBEAM entry.

The displacements modeled by the beam element are (see Fig.
2.2-2):

» Cubic transverse displacements v and w (s- and t-direction
displacements)
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» Linear longitudinal displacements # (r-direction
displacement)

» Linear torsional displacements 6, and warping
displacements

e The element is formulated based on the Bernoulli-Euler beam
theory.

e The following PBARL and PBEAML cross-sections are
supported by Advanced Nonlinear Solution: ROD, TUBE, 1,
CHAN, T, BOX, BAR, H, T1, I1, CHAN1, CHAN2, and T2.

¢ Axial forces applied to the beam are assumed to be acting along
the beam’s centroid and hence cause no bending. Also shear forces
applied to the beam are assumed to be acting through the beam’s
shear center and hence cause no twisting.

In order to model the bending due to an off-centroidal axial
force or a shear force applied away from the shear center, the
resulting moments can be applied directly or the forces can be
applied at an offset location using rigid elements.

v

/ End B

Plane 1

r (Xelem)

S (Yetem) A

node GB

End A t (chcm)

- node GA

Figure 2.2-1: Beam element
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1 t

Figure 2.2-2: Conventions used for 2-node Hermitian beam
element

e Stress and strain output is not supported in beam elements.

e Off-centered beam elements can be modeled using rigid
elements (see Fig. 2.2-3).

e The beam element formulation used depends on the selected
material (see Tables 2-2 and 2-3).

¢ Two basic formulations exist in Advanced Nonlinear Solution,
one for elastic materials and one for plastic materials.

Physical problem: Finite element model:
Rigid panel
/4 I-beam
I-beam Beam elements

]

e / Beam element
Rigid elements

Hollow square section

Figure 2.2-3: Use of rigid elements for modeling off-centered
beams
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¢ Elastic beam elements can be used to simulate bolts. See
Section 10.7 for details.

2.2.1 Elastic beam element

¢ Elastic beam elements can be used with
»small displacement/small strain kinematics, or
»large displacement/small strain kinematics.

e A TL (Total Lagrangian) formulation is used in the case of large
displacements.

o The elastic beam element only supports the isotropic material
model.

o The element’s force vector and stiffness matrix (except in
Solution 701) are evaluated in closed form for both small and large
displacement formulations. The stiffness matrix used is discussed
in detail in the following reference:

ref.  J.S. Przemieniecki, Theory of Matrix Structural
Analysis, McGraw-Hill Book Co., 1968.

e In the large displacement formulation, the displacements and
rotations are taken into account through a co-rotational framework,
in which the element rigid body motion (translations and rotations)
is separated from the deformational part of the motion.

Note that the element stiffness matrix is defined by the
following quantities:

E = Young's modulus

v = Poisson's ratio

L = length of the beam

I, = moments of inertia about the local principal axes r,
s, and ¢

cross-sectional area

AN
Il

sh gsh . . o
A", A" = effective shear areas in s and ¢ directions

26
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This stiffness matrix is transformed from the local degrees of
freedom (in the 1, s, t axes) to the global coordinate system and is
then assembled into the stiffness matrix of the complete structure.

In large displacement analysis, the large displacements and
rotations are taken into account through a co-rotational framework,
in which the element rigid body motion (translations and rotations)
is separated from the deformational part of the motion. For more
information, see the following reference:

ref:  B. Nour-Omid and C.C. Rankin, Finite rotation analysis
and consistent linearization using projectors, Comput.
Meth. Appl. Mech. Engng. (93) 353-384, 1991.
2.2.2 Elasto-plastic beam element
e FElasto-plastic beam elements can be used with the
»small displacement/small strain kinematics, or

»large displacement/small strain kinematics.

e An updated Lagrangian formulation is used in the case of large
displacements.

¢ Only isotropic bilinear plasticity is supported. Thermal strains
are not admissible for the elasto-plastic beam.

¢ The nonlinear elasto-plastic beam element can only be
employed for circular (ROD, TUBE) and rectangular (BAR) cross-
sections.

e The beam element matrices are formulated using the Hermitian
displacement functions, which give the displacement interpolation
matrix summarized in Table 2.2-2.
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Note: displacements correspond to the forces/moments S; in Fig. 2.2-4 after

condensation of the last two columns containing the shear effects in the s- and
t-directions.

Table 2.2-2: Beam interpolation functions not including shear effects
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S| = r-direction force at node GA (axial force, positive in compression)
S, = s-direction force at node GA (shear force)

S3 = t-direction force at node GA (shear force)

S4 = r-direction moment at node GA (torsion)

S5 = s-direction moment at node GA (bending moment)

S¢ = t-direction moment at node GA (bending moment)

S; = r-direction force at node GB (axial force, positive in tension)
Sg = s-direction force at node GB (shear force)

Sy = t-direction force at node GB (shear force)

S;o = r-direction moment at node GB (torsion)

Sy; = s-direction moment at node GB (bending moment)

S, = t-direction moment at node GB (bending moment)

Figure 2.2-4: Elasto-plastic beam element

e The element’s stiffness matrix and load vector are then
transformed from the local coordinate system used above to the
displacement coordinate system.

¢ Shear deformations can be included in beams by selecting a
non-zero K1 or K2 in the PBAR or PBEAM entries. Constant shear

distortions y,. and y,, along the length of the beam are assumed,

as depicted in Fig. 2.2-5. In this case the displacement interpolation
matrix of Table 2.2-2 is modified for the additional displacements
corresponding to these shear deformations.
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ref. KJB
Section 6.6.3

s S Irt 4 t
Kkﬂ " A

»-:v

Figure 2.2-5: Assumptions of shear deformations through element
thickness for nonlinear elasto-plastic beam element

e The interpolation functions in Table 2.2-2 do not account for
warping in torsional deformations. The circular section does not
warp, but for the rectangular section the displacement function for
longitudinal displacements is corrected for warping as described in
the following reference:

ref.  K.J. Bathe and A. Chaudhary, "On the Displacement
Formulation of Torsion of Shafts with Rectangular
Cross-Sections", Int. Num. Meth. in Eng., Vol. 18, pp.
1565-1568, 1982.

e The derivation of the beam element matrices employed in the
large displacement formulation is given in detail in the following

paper:

ref.  K.J. Bathe and S. Bolourchi, "Large Displacement
Analysis of Three-Dimensional Beam Structures," Int. J.
Num. Meth. in Eng., Vol. 14, pp. 961-986, 1979.

The derivations in the above reference demonstrated that the
updated Lagrangian formulation is more effective than the total
Lagrangian formulation, and hence the updated Lagrangian
formulation is employed in Solution 601.

e All element matrices in elasto-plastic analysis are calculated
using numerical integration. The integration orders are given in
Table 2.2-3. The locations of the integration points are given in Fig.
2.2-6.

30

Advanced Nonlinear Solution — Theory and Modeling Guide



2.2: Beam elements

Coordinate Section Integration Integration

scheme order

r Any Newton-Cotes 5
Rectangular 7

s ) Newton-Cotes
Pipe 3
¢ Rectangular Newton-Cotes 7

or Composite

0 Pipe trapezoidal 8

rule

Table 2.2-3: Integration orders in elasto-plastic beam analysis

A &
&0
HEIGHT | &6 ®-0-&-gm" ”
<>
WIDTH
Rectangular section Pipe section

b) Integration point locations in s-direction

Figure 2.2-6: Integration point locations in elasto-plastic beam
analysis
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Rectangular section

Pipe section (3-D action)
c¢) Integration point locations in t-direction

Figure 2.2-6: (continued)

e The elasto-plastic stress-strain relation is based on the classical
flow theory with the von Mises yield condition and is derived from
the three-dimensional stress-strain law using the following
assumptions:

- the stresses 7 and 7, are zero

- the strain y,, is zero

Hence, the elastic-plastic stress-strain matrix for the normal stress
7, and the two shear stresses 7, and 7,, is obtained using static

condensation.
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2.2.3 Mass matrices

e The beam element can be used with a lumped or a consistent
mass matrix, except for Solution 701 which always uses a lumped
mass.

e The consistent mass matrix of the beam element is evaluated in
closed form, and does not include the effect of shear deformations.

e The lumped mass for translational degrees of freedom is M /2
where M is the total mass of the element.
The rotational lumped mass for implicit analysis (Solution 601)
2 M1

isM =—- 7 1:1’ , in which /,, = polar moment of inertia of the

beam cross-section and 4 = beam cross-sectional area. This lumped
mass is applied to all rotational degrees of freedom.
The rotational lumped mass for explicit analysis (Solution 701)

M 1

m

isM,, = 3 7 . 7 where [, is the maximum bending moment of

inertia of the beam /,, = max (I 1 ) . This lumped mass is

ss 21t
applied to all rotational degrees of freedom. Note that this scaling
of rotational masses ensures that the rotational degrees of freedom
do not affect the critical stable time step of the element.

2.2.4 Heat transfer capabilities

e The beam element has the same heat transfer capabilities of the
rod element. See Section 2.1.5 for details.

2.3 Shell elements

e Shell elements in Advanced Nonlinear Solution are generated
when a PSHELL or PCOMP property ID entry references one of
the following Nastran shell entries: CQUAD4, CTRIA3, CQUADS,
CTRIA6, CQUADR, or CTRIAR. The elements are shown in Fig.
2.3-1.
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AN

(a) 3-node element (b) 4-node element
(c) 6-node element (d) 8-node element

Figure 2.3-1: Shell elements in Advanced Nonlinear Solution

e The PSHELL entry results in a single-layered shell, while
PCOMP produces a composite shell.

¢ Shell elements are classified based on the number of nodes in
the element. Table 2.3-1 shows the correspondence between the
different shell elements and the NX element connectivity entries.

¢ Solution 701 only supports 3-node and 4-node single-layered
shell elements.

Shell element NX element connectivity entry
3-node CTRIA3, CTRIAR
4-node CQUAD4, CQUADR
6-node’ CTRIAG6
8-node’ CQUADS
9-node’ CQUADS?
Notes:

1. Only for Solution 601
2. With ELCV =1 in NXSTRAT entry

Table 2.3-1: Correspondence between shell elements and NX
element connectivity
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e The extra middle node in the 9-node shell element is
automatically added by the program when ELCV is set to 1 in the
NXSTRAT entry. This extra node improves the performance of the
shell element. The boundary conditions at the added node are
predicted from the neighboring nodes.

¢ Incompatible modes (bubble functions) can be used with 4-node
shell elements. It can be set through ICMODE in the NXSTRAT
entry. Additional displacement degrees of freedom are introduced
which are not associated with nodes; therefore the condition of
displacement compatibility between adjacent elements is not
satisfied in general. The addition of the incompatible modes
(bubble functions) increases the flexibility of the element,
especially in bending situations. For theoretical considerations, see
reference KJB, Section 4.4.1. Note that these incompatible-mode
elements are formulated to pass the patch test. Also note that
element distortions deteriorate the element performance when
incompatible modes are used.

The incompatible modes feature can only be used with 4-node
single layer shell elements. The feature is available in linear and
nonlinear analysis.

e Table 2.3-2 lists the features and capabilities available for the
shell element types mentioned above.

Large Large strain Large .
Shell displacement/ ULJ strain ULH Bubble Solution
element . . ) functions 701
small strain formulation formulation

3-node v v v v
4-node v v v v v
6-node v v v
8-node v
9-node v v v

Table 2.3-2: Features available for shell elements
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2.3.1 Basic assumptions in element formulation

¢ The basic equations used in the formulation of the shell
elements in Advanced Nonlinear Solution are given in ref. KJB.
These elements are based on the Mixed Interpolation of Tensorial
Components (MITC). Tying points are used to interpolate the
transverse shear strain and the membrane strains if necessary.
These elements show excellent performance.

o The shell element formulation treats the shell as a three-
dimensional continuum with the following two assumptions used in
the Timoshenko beam theory and the Reissner-Mindlin plate
theory:

Assumption 1: Material particles that originally lie on a
straight line "normal" to the midsurface of the structure remain
on that straight line during deformation.

Assumption 2: The stress in the direction normal to the
midsurface of the structure is zero.

For the Timoshenko beam theory, the structure is the beam, and
for the Reissner/Mindlin plate theory, the structure is the plate
under consideration. In shell analysis, these assumptions
correspond to a very general shell theory. See the reference below
for more details:

ref.  D. Chapelle and K.J. Bathe, The Finite Element Analysis
of Shells — Fundamentals, Springer, 2003.

¢ In the calculations of the shell element matrices the following
geometric quantities are used:

» The coordinates of the node & that lies on the shell element
midsurface at txik, i=1,2,3 (see Fig. 2.3-2); (the left
superscript denotes the configuration at time #)

» The director vectors ‘V* pointing in the direction "normal"
to the shell midsurface
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2.3: Shell elements

ref. KJB » The shell thickness, a, , at the nodal points measured in the

Fig. 5.33

page 437 direction of the director vectors ’V,f (see Fig. 2.3-3).

Midsurface nodes G2

Figure 2.3-2: Some conventions for the shell element; local node
numbering; local element coordinate system

No stiffness
for rotation
about Vrll(

Vi

Figure 2.3-3: Shell degrees of freedom at node k
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e Based on these quantities the geometry of the shell is
interpolated as follows:

q

q
=3+ %Z:akhktl/nf (i=1,2,3)
k=1

where ¢ is the number of element nodes, ’ Vn]f (i=1,2,3) are the

components of the shell director vector tVf and A, (r,s) are the

2-D interpolation functions.

e At the element level the shell has 5 independent degrees of
freedom per node: 3 displacements about the displacement
coordinate system resulting from the displacement of the shell
midsurface and 2 rotations resulting from the motion of the shell

. . k
direction vector Vn :

9 t q
l”i :zhk l“zk +_zakhk (tVn]f = I/n]:)
k=1 2k:l

The motion of the director vector at node £ is described using 2
rotational degrees of freedom about V, and V} which are 2 axes

perpendicular to the shell director Vf as shown in Fig. 2.3-3.

V" Yka
[v<vil,
V), =Vixvf

For the special case when the Vf vector is parallel to the Y axis,

the program uses the following conventions:
Vi=Z V=X when V'=+Y

and
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Vi=-Z Vi=X when V'=-Y

The two rotational degrees of freedom named ¢, and f, are about
axes Vlk and Vzk respectively.

When using the large displacement formulations, the definitions
of Vlk and Vzk are only used at time = 0 (in the initial

configuration) after which the vectors ‘'V* and ‘V/* are updated
using incremental rotations at the nodal points, and 'V, is

calculated by the cross-product 'V = 'V x 'V

Note that a shell node may however be assigned 3 rotational
degrees of freedom. In this case, the element’s two rotational
degrees of freedom are transformed to the displacement coordinate
system before assembly.

e Assumption 1 on the kinematic behavior of the shell enters the
finite element solution in that the particles along the director vector

'V (interpolated from the nodal point director vectors V)
remain on a straight line during deformation.
Note that in the finite element solution, the vector 'V, is not

necessarily exactly normal to the shell midsurface. Fig. 2.3-4(a)
demonstrates this observation for a very simple case, considering

the shell initial configuration. Furthermore, even if 'V, is

originally normal to the shell midsurface, after deformations have
taken place this vector will in general not be exactly perpendicular
to the midsurface because of shear deformations (see Fig. 2.3-4(b)).

e The assumption 2 on the stress situation enters the finite

ref. KJB element solution in a manner that is dependent on the formulation
Section 5.4.2 1 .
page 440  ©MP oyed:

All formulations except for the large displacement/large strain
shell element: The stress in the t-direction (i.e., in the direction of

"V, ) is imposed to be zero. This is achieved by using the stress-
strain relationship in the 7,5, ¢ coordinate system, shown in Fig.
2.3-5(a), with the condition that the stress in the direction ¢ is zero.
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a) Due to initial geometry

O,
Initial configuration A"

Angle =90°

Z A Final configuration

Angle # 90°

Y

b) Due to displacements and deformations (with shear)

Figure 2.3-4: Examples of director vectors not normal to the shell
midsurface

Large displacement/large strain shell element: The stress in the
f -direction (not necessarily in the direction of 'V, ) is imposed to
be zero. This is achieved by using the stress-strain relationship in
the 7,5,f coordinate system, shown in Fig. 2.3-5(b), with the

condition that the stress in the direction 7 is zero.
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sXt §:t><r

r= _
lIsxtll, itxrll, f

(a) Definition of the local Cartesian system at an
integration point in the shell

A
s Xt

5 ——> S = r
T
lIr xsll, s XTIl

b) Definition of the midsurface Cartesian system ( T, s, ?)
at an integration point

Figure 2.3-5: Local coordinate systems in shell element
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ref. KJB
pp. 399, 440

ref. KJB
pp. 399, 440

e The transverse shear deformations are assumed by default to be
constant across the shell thickness. The use of the correction factor
of 5/6 can be specified to improve the prediction of the
displacement response, for the linear elastic and linear orthotropic
models.

¢ The interpolation of the geometry of the shell element is always
as described above, but for a specific solution time the current
coordinates of the midsurface nodal points are used, and the current
director vectors are employed. The midsurface nodal point
coordinates are updated by the translational displacements of the
nodes and the director vectors are updated using the rotations at the
nodes (rotation increments in large displacement analysis).

e The transverse shear deformations are assumed to be constant
across the shell thickness.

e In large displacement analysis, the midsurface nodal point
coordinates are updated by adding the translational displacements
of the nodes, and the director vectors are updated using the
incremental rotations at the nodes by applying the large rotation
update transformation described in p. 580 of ref. KIB (Exercise
6.56).

2.3.2 Material models and formulations

ref. KJB
Section 6.6

e See Tables 2-2 and 2-3 for a list of the material models that are
compatible with shell elements.

e The shell element can be used with

» small displacement/small strain kinematics,
» large displacement/small strain kinematics, or
» large displacement/large strain kinematics.

In the small displacement/small strain case, the displacements
and rotations are assumed to be infinitesimally small. Using a
linear material results in a linear element formulation, and using a
nonlinear material results in a materially-nonlinear-only
formulation.

42
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In the large displacement/small strain case, the displacements
and rotations can be large, but the strains are assumed to be small.
In this case, a TL formulation is used.

The large displacement/large strain formulation for shells can be
either a ULJ (updated Lagrangian Jaumann) formulation or a ULH
formulation (updated Lagrangian Hencky) depending on the
ULFORM parameter in the NXSTRAT entry. In the ULJ
formulation, the total strains can be large, but the incremental strain
for each time step should be small (< 1%). The ULH formulation
requires more computations, however, it has no such restriction on
the size of the incremental strains.

The large displacement/large strain kinematics can be only used
with single layer shell elements with an isotropic plastic material.
See Table 2.3-2 for a list of the supported shell elements.

2.3.3 Shell nodal point degrees of freedom

e Shell nodes can have either 2 or 3 rotational degrees of freedom
which results in nodes having either 5 or 6 degrees of freedom.

e The criterion for determining whether a shell node is assigned 5
or 6 degrees of freedom is as follows. 5 degrees of freedom are
initially assigned to all shell midsurface nodes. The following cases
change the node to 6 degrees of freedom:

» Geometry. Shell elements at that node intersecting at an
angle greater than a specified tolerance (SDOFANG parameter
in the NXSTRAT entry).

» Other elements. If the node also has other elements with
rotational degrees of freedom, i.e., beam elements, rotational
springs, rotational masses or rotational dampers.

» Rotational loads, constraints or boundary conditions.
This includes the following cases:

- applied moment at the node
- rotational fixed boundary condition at the node

- rigid link connected to the node
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- constraint equation involving constrained rotations
connected to the node

- enforced rotations at the node

e Shell nodes with 6 degrees of freedom may be a potential source
for singularity. In this case, very weak springs are automatically
added to prevent the singularity. The cases in which this happens
are discussed later in this section.

e Fig. 2.3-6 shows examples of 5 and 6 degree of freedom shell
nodes.

4-node shell elements

No X,Y,Z translations
No Y, Z rotations

Concentrated
forces
9 "Fy
—pp
Mz
8 \ Concentrated
X moments
Rigid element (Node 3
}»Z beam elements as independent node)
Y
Node Number Potentigl

of DOFs singularity
1 6 Yes
2 5 No
3 6 Yes
4 6 No
5 5 No
6 6 No
7 6 No
8 6 Yes
9 5 No

Figure 2.3-6: Examples of shell nodes with 5 or 6 degrees of freedom
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¢ Note that for both 5 and 6 degree of freedom shell nodes, the
translations u, vy, wy are referred to the chosen displacement
coordinate system.

5 degrees of freedom node: A node "k" that is assigned 5 degrees
of freedom incorporates the following assumption:

» Only one director vector (denoted at time = 0 as OVf ) is

associated with the node. The program calculates the director
vector by taking the average of all normal vectors (one normal
vector is generated per shell element attached to node k) at the
node. This is illustrated in Fig. 2.3-7.

If two (or more) elements attached to the node have oppositely
directed normals, the program reverses the oppositely directed
normals, so that all normals attached to the node have (nearly) the
same direction.

OVE is the average of all element director vectors

element 1

element 2

0
Oy /k VE

element 1
element 2

Figure 2.3-7: 5 degree of freedom shell node with unique vector
at node k
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6 degrees of freedom node: A node "k" that is assigned 6 degrees
of freedom incorporates the following assumption:

» The program generates as many normal vectors at node k as
there are shell elements attached to the node. Hence each individual
shell element establishes at node & a vector normal to its
midsurface. This is illustrated in Fig. 2.3-8. The components of the
shell element matrices corresponding to the rotational degrees of
freedom at this node are first formulated in the local midsurface
system defined by the normal vector and then rotated to the
displacement coordinate system.

director for element 1 .
director for element 2
\ /

element 1

element 2

05,k
Oyk Vi

element 1 element 2

3 k k

element 1
element 2

Figure 2.3-8: 6 degree of freedom shell node with separate director
vectors at node k (each vector is used as a director
vector for the respective element)

e The three rotational degrees of freedom at node & referred to the
displacement coordinate system can be free or constrained.

Singularity at 6 degree of freedom shell nodes

e When a shell node is forced to have 6 degrees of freedom due to
the reasons explained above, there may be a singularity at one of
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the rotational degrees of freedom. In this case, a weak rotational
spring is added to the 3 rotational degrees of freedom. This is done
automatically by Advanced Nonlinear Solution and usually does
not require user intervention. The stiffness of the spring is set to be
a small fraction of the average rotational stiffnesses at the shell
node. This fraction is can be changed via the DRILLKF parameter
in NXSTRAT.

e Not all the cases that lead to a shell node possessing 6 degrees
of freedom (listed at the beginning of this section) may introduce a
singularity at the node.

» Geometry. No potential singularity exists in this case, since
the shell is curved.

» Other elements. Beam-stiffened shells will have a
singularity at the shell nodes only if the beam is perpendicular
to a flat shell surface. Otherwise, a singularity can still exist in
the model if the beam is not properly restrained (see Fig. 2.3-9
(a)). The same applies to rotational springs, masses and
dampers.

» Rotational loads, constraints or boundary conditions. All
the items listed earlier for this feature result in a potential
singularity (see Fig. 2.3-9 (b)) except when all rotational
degrees of freedom at the node are fixed.

o If multiple factors lead to the presence of 6 degrees of freedom
at a shell node, no singularity is present if any of the factors
eliminates the singularity. For example, if a shell node has an
applied moment and is attached to non-perpendicular beam
elements there is no singularity.
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Zero pivot in
stiffness matrix.

:/ \ / Vi

a) Structural element/rigid link attached to node,
structural element/rigid link is unsupported.

Moment causes
z . . .
infinite rotation.

)y
X f / TtVn
Reactions at fixities £»
are zero. /

b) Moment applied in shell normal direction.

Figure 2.3-9: Flat shell with 6 DOFs at a node with singularity

e Fig. 2.3-6 shows examples where shell singularity may or may
not occur.

e The singularity that may result from beams attached to shells
requires some clarification. If a beam connects two shell structures
as shown in Fig. 2.3-10, and it is perpendicular to both shells, then
the beam is free to rotate about this perpendicular direction (the
z-direction in this example). If the beam intersects the shells at an
angle, this singularity is not present.
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Perpendicular
to both shells

Not perpendicular
to shells

z
—— Shell elements X/L y

Figure 2.3-10: Beams intersecting shell elements

e An alternative to using the drilling stiffness option is to connect
the 6 DOF nodes on flat shells to neighboring shell nodes using
soft beam elements (so-called “weld elements”). This idea is shown

in Fig 2.3-11. Then moments applied into the 'V, direction will be

taken by the weld elements, and these moments will cause
equilibrating reactions at the fixities. The weld elements also

provide stiffness in the 'V, direction, so that there will be no zero

pivots.

Soft beam element. M,

Reactions at fixities £» f
are NONZero. / /

Figure 2.3-11: Soft beam element takes applied moment

tVn

Advanced Nonlinear Solution — Theory and Modeling Guide 49



Chapter 2: Elements

2.3.4 Composite shell elements (Solution 601 only)

e Composite shell elements are generated when a PCOMP
property ID references one of the following Nastran shell
connectivity entries: CQUAD4, CTRIA3, CQUADS, CTRIAS®.

e The composite shell elements are kinematically formulated in
the same way as the single layer shell elements, but

» An arbitrary number of layers can be used to make up the
total thickness of the shell, and each layer can be assigned a
different thickness.

» Each layer can be assigned one of the different material
models available. The element is nonlinear if any of the material
models is nonlinear, or if the large displacement formulation is
used.

» Large displacement/large strain kinematics are not supported
for composite shell elements.

o The conventions for defining the director vectors, the local axes
V, and V,, and the 5/6 degree of freedom selection are all the same
as those for the single layer shell.

e In order to take into account the change of material properties
from one layer to another, numerical integration of the mass and
stiffness matrices is performed layer by layer using reduced natural
coordinates through the thickness of the element (see Fig. 2.3-12
and 2.3-13). The relation between the element natural coordinate ¢
and the reduced natural coordinate ¢* of layer n is:

z:-1+{2(Zn“e"]—£"(1—t")} (2.3-1)

a i=1
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with

t = element natural coordinate through the thickness
" = layer n natural coordinate through the thickness

¢" = thickness of layer i
a = total element thickness

aand ¢' are functions of » and s.

zZ

Figure 2.3-12: 8-node composite shell element

K n§ EL, n vy Layer n

_— — = — — —
== = = = =

Layer 1

Figure 2.3-13: Multilayered shell
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The geometry of layer » is given by:

N N En
=D kXY ml " Y (2.3-2)
k=1 k=1 2
with
‘x, = coordinate of a point inside layer  in direction i

N = number of nodes
h, = interpolation functions

x; = Cartesian coordinates of node k
'Vt = component of normal vector ‘' V' at node k
a, = total element thickness at node k&
l fc = thickness of layer j at node &k

m, = distance between element midsurface and midsurface of

layer n at node &k

In the above formula, m, is given by

" ak n . EZ
m =——L4» 2.3-3
(== Z 5 (2.3-3)

2.3.5 Numerical integration

¢ Gauss numerical integration is used in the in-plane directions of
the shell. For the 4-node shell element, 2x2 integration is used. For
the 8-node and 9-node elements, 3x3 point integration is used. The
3-node triangular shell element uses 4-point Gauss integration in
the in-plane directions, and the 6-node triangular shell element uses
7-point Gauss integration.
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ot KIB Numerical integration through the shell thickness is as follows:

Section 6.8.4 . . . . L
- For elastic materials, 2-point Gaussian integration is always

used.

- For elasto-plastic materials, 5-point Newton-Cotes
integration is the default. Although using 5-point integration
is computationally more expensive, it gives much more
accurate results for elasto-plastic shells.

- For composite shells with elasto-plastic materials, 3-point
Newton-Cotes integration is the default.

The order of through-thickness integration can be modified via the
TINT parameter in the NXSTRAT entry. If TINT is specified, it
will be applied to both single-layered and composite elasto-plastic
shells.

o The same integration order is used for both Solution 601 and
701.

2.3.6 Mass matrices

e In Solution 601 shell element can be employed with a lumped
or a consistent mass matrix. Only a lumped mass matrix is allowed
in Solution 701.

e The consistent mass matrix is calculated using the isoparametric
formulation with the shell element interpolation functions.

e The lumped mass for translational degrees of freedom of
midsurface nodes is M /n where M is the total element mass and
n is the number of nodes. No special distributory concepts are
employed to distinguish between corner and midside nodes, or to
account for element distortion.

The rotational lumped mass for implicit analysis (Solution 601)
.M 1
is ——(

2

av

t ), where ¢, is the average shell thickness. The same

rotational mass matrix is assumed for 5- and 6-degree of freedom
nodes, and is applied to all rotational degrees of freedom.
The rotational lumped mass for explicit analysis (Solution 701)

is M%(tfv + A ), where 7, is the average shell thickness and 4 is
n
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the cross-sectional area. The rotational masses are scaled up to
ensures that the rotational degrees of freedom will not reduce the
critical time step for shell elements. The same rotational mass
matrix is assumed for 5- and 6-degree of freedom nodes and is
applied to all rotational degrees of freedom.

2.3.7 Heat transfer capabilities

ref KIB
Section 5.4.2

e Heat transfer capabilities are available for all supported shell
elements, including composite shells.

o The shell heat transfer capabilities are formulated by assuming
that the temperature varies linearly through the shell thickness
direction. Two degrees of freedom are therefore assigned at each
shell node, one for the top shell surface and one for the bottom
shell surface.

e The element matrices are integrated numerically by Gauss
integration using the same integration order as the structural
matrices.

e In the calculation of the top and bottom shell surfaces, the
following geometric quantities are used:

< the coordinates of the nodes that lie on the shell element
midsurface.

< the director vectors V, normal to the shell midsurface.

< the shell thicknesses a at the nodal points measured in the
direction of the vector Vf (see Fig. 2.3-14)

e Fig. 2.3-14 shows a 4-node thermal shell element with the shell
midsurface nodes, the nodal director vectors and constructed top
and bottom nodes. The director vectors are automatically calculated
by the program, see Fig. 2.3-15.
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All director vectors must
t A point towards the same
side of the shell element

Shell
midsurface

Thickness at a mid-
surface node is
measured along the

director vector Vp

e Input midsurface nodes  ©Generated top and bottom nodes

Figure 2.3-14: Description of the thermal shell element

e In the calculation of the shell element matrices, i.e.,
conductivity, heat capacity, and heat generation, the top and bottom
shell surfaces are used instead of the midsurface.

o The shell heat capacity matrix can be calculated based on a
lumped or a consistent formulation, similar to the mass matrix in
structural analysis.

e Thermal loads and boundary conditions such as applied
temperatures, heat flux, convection and radiation can all be applied
to either the top or bottom shell surfaces.
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Director vector is
average of all midsurface
normal vectors at the node

Normal vector to midsurface |

\ // Node k
\ Element 1

Normal vector to
L[/ midsurface

| Element 2 /
‘ Thickness

e Input midsurface nodes o Generated top and bottom nodes

Thickness&

Vlﬁ Vlﬁ

Element 1 A
f\/l Element 2
Thickness input refer
to these directions

Figure 2.3-15: Program-calculated director vector at thermal shell
nodes

2.3.8 Selection of elements for analysis of thin and thick shells

e The most effective element for analysis of general shells is
usually the 4-node element. This element does not lock and has a
high predictive capability and hence can be used for effective
analysis of thin and thick shells.

¢ The phenomenon of an element being much too stiff is, in the
ref. KIB literature, referred to as element locking. In essence, the
pp. 403-408 phenomenon arises because the interpolation functions used for an
element are not “abundantly” able to represent zero (or very small)
shearing or membrane strains. If the element cannot represent zero
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shearing strains, but the physical situation corresponds to zero (or
very small) shearing strains, then the element becomes very stiff as
its thickness over length ratio decreases. The MITC elements are
implemented to overcome the locking problem. More details on the
interpolations used for the transverse and membrane terms are
provided in ref. KJB, pp. 403 — 406.

2.4 Surface elements — 2-D solids (Solution 601 only)

e 2-D solid elements are obtained in the following cases:

» PPLANE property ID that references the CPLSTS3,
CPLSTS4, CPLSTS6 or CPLSTSS8 plane stress elements, or the
CPLSTN3, CPLSTN4, CPLSTNG6 or CPLSTNS plane strain
elements. This leads to 2D plane strain or plane stress elements
that must be oriented in the X-Z plane.

» PSOLID or PLSOLID property ID entry that references the
axisymmetric elements CQUADX4, CQUADXS, CTRAX3, or
CTRAXG6. This leads to an axisymmetric 2-D element which
must be oriented in the X-Z plane. This is the preferred form for
axisymmetric elements since elastic, plastic and hyperelastic
materials can be used with these elements. Contact analysis can
also be performed with these elements.

» PLPLANE property ID that references the CPLSTS3,
CPLSTS4, CPLSTS6 or CPLSTSS8 plane stress elements, or the
CPLSTN3, CPLSTN4, CPLSTNG6 or CPLSTNS plane strain
elements. This leads to hyperelastic 2-D plane strain or plane
stress which much be oriented in the X-Z plane.

» PLPLANE property ID entry that references the CQUAD,
CQUAD4, CQUADS, CQUADX, CTRIA3, CTRIA6, or
CTRIAX shell elements. This leads to a hyperelastic plane
strain or axisymmetric 2-D element which must be oriented in
the X-Y plane.

» PSHELL property ID entry with MID2 = -1 that also
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references the shell elements CQUAD4, CQUADS, CTRIA3, or
CTRIAG. This leads to a plane strain 2-D element which must
be oriented in the X-Y plane.

» 2-D elements are not supported in Solution 701.
2.4.1 General considerations
e The following kinematic assumptions are available for two-
dimensional elements in Solution 601: plane strain, plane stress

and axisymmetric. Fig. 2.4-1 and Fig. 2.4-2 show some typical 2-
D elements and the assumptions used in the formulations.

1 L

(a) 8- & 9-node quadrilateral elements

JAN

(b) 3-node triangular element (c) 4-node quadrilateral element

AN

(d) 6- & 7-node triangular elements

Figure 2.4-1: 2-D solid elements

e 2-D solid elements in Solution 601 are classified based on the
number of nodes in the element and the element shape. Table 2.4-1
shows the correspondence between the different 2-D solid elements
and the NX element connectivity entries.
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y €,=0 y 6~=0
sz = 0 O x = O
z X Yy =0 z X Gy =0
a) Plane strain element b) Plane stress element
€, =U/X

(linear analysis)

y
Yz =0
V4 X

Yy =0

¢) Axisymmetric element

Figure 2.4-2: Basic assumptions in 2-D analysis
(assuming element lies in X-Y plane)

e Note that the extra middle node in the 7-node and 9-node 2-D

elements is automatically added by the program when ELCV is set

to 1 in the NXSTRAT entry. These extra nodes improve the

performance of the 2-D elements as explained later in this section.
The boundary conditions at the added node are predicted from the

neighboring nodes.

e The axisymmetric element must lie in the +X half plane.

e 2-D solid elements can be combined with any other elements

available in Advanced Nonlinear Solution.

e The axisymmetric element represents one radian of the

structure, and defines the stiffness, mass and forces accordingly.

and 5.3.2 Hence, when this element is combined with other elements, or
when concentrated loads are defined, these must also refer to one
radian, see ref. KJB, Examples 5.9 and 5.10, p. 356.

ref. KJB
Sections 5.3.1

o The plane strain element provides for the stiffness of a unit

thickness of the structure, and defines the stiffness, mass and forces

accordingly.
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2-D solid element NX element connectivity entry

CPLSTN3', CPLSTS3’
3-node triangle CTRIA3®, CTRAX3®
CTRIAX® (with 3 input nodes)

CPLSTN4', CPLSTS4’
4-node quadrilateral CQUAD4’, CQUADX4°
CQUAD*, CQUADX? (with 4 input nodes)

CPLSTN6', CPLSTS6’
6-node triangle CTRIA6®, CTRAX6®
CTRIAX? (with 6 input nodes)

CPLSTN6"', CPLSTS6™’
7-node triangle CTRIA6>, CTRAX6%
CTRIAX*’ (with 6 input nodes)

CPLSTNS', CPLSTSS’
8-node quadrilateral CQUADS’, CQUADXS®
CQUAD’, CQUADX (with 8 input nodes)

CPLSTN8"’, CPLSTS8*’

CQUADS>’, CQUADX8®’

CQUAD™", CQUADX>’ (with 8 input nodes)
CQUAD", CQUADX (with 9 input nodes)

9-node quadrilateral

Notes: 1. Plane strain

2. Plane stress

3. Axisymmetric hyperelastic only

4. Plane strain hyperelastic only

5. Plane strain hyperelastic

6. Axisymmetric with no restriction on material
7

. With ELCV =1 in NXSTRAT entry

Table 2.4-1: Correspondence between 2-D solid elements and NX element
connectivity entries
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2.4: Surface elements — 2-D solids

e The plane stress 2-D element has an element thickness that is
defined either in the CPLSTSi element entry or in the PPLANE or
PLPLANE entry. The element can have a varying thickness, that is,
the thickness can be different at each node. However, the thickness
at a mid-side node is always taken as the average of the thickness
of the corresponding corner nodes.

e The basic 2-D elements used in Solution 601 are isoparametric
displacement-based elements, and their formulation is described in
detail in ref. KJB, Section 5.3.

e The basic finite element assumptions for the coordinates are
(see Fig. 2.4-3):
q q
X = zhixi » V= zhiyi
i=1

i=l

and for the displacements:

where
hir,s) = interpolation function corresponding to node i
(r,s) = isoparametric coordinates
g = number of element nodes
x;, vi = nodal point coordinates
u;, v; = nodal point displacements

The equations above are for 2-D solid elements that lie in the X-Y
plane. A simple change of variable from y to z describes the 2-D
solid elements in the X-Z plane.
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Yy
N
4 7 3
Displacement degrees
of freedom
%
\p :
O : -
VAR >| X

X2

Figure 2.4-3: Conventions used for the 2-D solid element
(assuming element lies in X-Y plane)

e In addition to the displacement-based elements, special mixed-
interpolated elements are also available, in which the displacements
and pressure are interpolated separately. These elements are
effective and should be preferred in the analysis of incompressible
media and inelastic materials (elastic materials with Poisson's ratio
close to 0.5, rubber-like materials, creep and elasto-plastic
materials). The mixed formulation is only available for plane strain
and axisymmetric 2-D elements. It is not available (and not needed)
for plane stress 2-D elements.

e Table 2.4-2 shows the number of pressure degrees of freedom
used for each 2-D element type. For more details on the number of
degrees of freedom ideal for each element, see the ref. KIB,
Section 4.4.3 and Table 4.6, pp. 292-295.

e The mixed interpolation is the default setting for hyperelastic
materials. It can be activated for other materials, such as elasto-
plastic, creep, and elastic with high Poisson’s ratio, via the
UPFORM flag in the NXSTRAT entry. The 4-node element (1
pressure degree of freedom) and 9-node element (3 pressure
degrees of freedom) are recommended with the mixed formulation.
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Number
. of
2-D solid element
pressure
DOFs
3-node triangle -
4-node quadrilateral 1
6-node triangle 3
7-node triangle 3
8-node quadrilateral 3
9-node quadrilateral 3

Table 2.4-2: Mixed formulation settings for 2-D solid elements

ref.  T. Sussman and K.J. Bathe, "A Finite Element
Formulation for Nonlinear Incompressible Elastic and
Inelastic Analysis," J. Computers and Structures, Vol.

26, No. 1/2, pp. 357-409, 1987.

¢ In addition to the displacement-based and mixed-interpolated
elements, Advanced Nonlinear Solution also includes the
possibility of including incompatible modes (bubble functions) in
the formulation of the 4-node 2-D solid element. Within this
element, additional displacement degrees of freedom are
introduced. These additional displacement degrees of freedom are
not associated with nodes; therefore the condition of displacement
compatibility between adjacent elements is not satisfied in general.
The addition of the incompatible modes (bubble functions)
increases the flexibility of the element, especially in bending
situations. For theoretical considerations, see reference KJB,
Section 4.4.1. Note that these incompatible-mode elements are
formulated to pass the patch test. Also note that element distortions
deteriorate the element performance when incompatible modes are
used. The incompatible modes setting can be changed using
ICMODE in the NXSTRAT entry.

The incompatible modes feature cannot be used in conjunction
with the mixed-interpolation formulation.
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ref. KJB
Section 5.3.2

e The interpolation functions used for 2-D solid elements are
defined in ref. KJB, Fig. 5.4, p. 344.

o The 6-node spatially isotropic triangle is obtained by correcting
the interpolation functions of the collapsed 8-node element. It then
uses the same interpolation functions for each of the 3 corner nodes
and for each of the midside nodes.

The 3-node triangular element is obtained by collapsing one
side of the 4-node element. This element exhibits the constant
strain conditions (except that the hoop strain in axisymmetric
analysis varies over the element).

e The stresses/strains can be output either at the center and corner
grid points (PSOLID STRESS=blank or GRID), or at the center
and corner Gauss points (PSOLID STRESS=1 or GAUSS). The
option for output at the Gauss points is only available for
axisymmetric elements.

2.4.2 Material models and formulations

e See Tables 2-2 and 2-3 for a list of the material models that are
compatible with 2-D solid elements.

e Advanced Nonlinear Solution automatically uses the mixed
interpolation formulation for hyperelastic materials. The mixed
formulation is also recommended for elastic-plastic materials and
also elastic materials with a Poisson ratio close to 0.5. For these
materials, the u/p mixed formulation can be activated by setting
UPFORM =1 in the NXSTRAT entry.

e The two-dimensional elements can be used with
- small displacement/small strain kinematics,
- large displacement/small strain kinematics, or
- large displacement/large strain kinematics.
» The small displacement/small strain and large

displacement/small strain kinematics can be used with any of
the compatible material models, except for the hyperelastic
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ref. KJB
Sections 6.2 and
6.3.4

ref. KIB
Section 6.8.1

material. The use of a linear material with small
displacement/small strain kinematics corresponds to a linear
formulation, and the use of a nonlinear material with the
small displacement/small strain kinematics corresponds to a
materially-nonlinear-only formulation.

» The program uses the TL (total Lagrangian) formulation
when the large displacement/small strain formulation is
selected.

» The large displacement/large strain kinematics can be used
with plastic materials including those with thermal and creep
effects, as well as hyperelastic materials. The ULH (updated
Lagrangian Hencky) formulation or ULJ (updated
Lagrangian Jaumann) formulation can be used for all
compatible material models except the hyperelastic material.
For the hyperelastic material, the TL (total Lagrangian)
formulation is used. The ULFORM parameter in the
NXSTRAT entry determines the ULH/ULJ setting.

e The basic continuum mechanics formulations of 2-D solid
elements are described in ref. KJB, pp. 497-537, and the finite
element discretization is given in ref. KJB pp. 538-542, 549-555.

e Note that all these formulations can be mixed in the same finite
element model. If the elements are initially compatible, then they
will remain compatible throughout the analysis.

2.4.3 Numerical integration

ref. KJB
Sections 5.5.3,
5.5.4 and 5.5.5

e The 4-node quadrilateral element uses 2x2 Gauss integration for
the calculation of element matrices. The 8-node and 9-node
elements use 3x3 Gauss integration. See Fig 2.4-4(a).

e The 3-node, 6-node and 7-node triangular elements are spatially
isotropic with respect to integration point locations and
interpolation functions (see Section 5.3.2, ref. KIB). The 3-node
element uses a single point integration in plane strain and 4-point
Gauss integration in the axisymmetric case. The 6-node and 7-node
triangular elements use 7-point Gauss integration. See Fig 2.4-4(b).
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a) Rectangular elements

4-point

b) Triangular elements

Figure 2.4-4: Integration point positions for 2-D solid elements

¢ Note that in geometrically nonlinear analysis, the spatial
positions of the Gauss integration points change continuously as
the element undergoes deformations, but throughout the response
the same material particles are at the integration points.

2.4.4 Mass matrices

¢ The consistent mass matrix is always calculated using either
3x3 Gauss integration for rectangular elements or 7-point Gauss
integration for triangular elements.

e The lumped mass matrix of an element is formed by dividing
the element’s mass M equally among its » nodes. Hence, the mass
assigned to each node is M /n . No special distributory concepts
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are employed to distinguish between corner and midside nodes, or
to account for element distortion.

2.4.5 Heat transfer capabilities

e Heat transfer capabilities are available for all 2-D solid
elements.

e The planar 2-D solid heat transfer elements may be defined
using any of the 2-D solid plane strain or plane stress element
entries. There is no difference between plane strain and plane stress
for heat transfer analysis, except for the element thicknes, see
below.

e One temperature degree of freedom is present at each node.

o The axisymmetric elements must be defined using the
CQUADX; or CTRAX; entries, and they cover one radian of the
physical domain.

e The element matrices are integrated numerically by Gauss
integration using the same integration order as the structural
matrices.

e The planar 2-D heat transfer element assumes the same
thickness as the underlying plane stress or plane strain element.
The axisymmetric element always extends one radian in the
circumferential direction.

e The heat capacity matrix can be calculated based on a lumped or
consistent heat capacity assumption.

e The lumped heat capacity matrix of an element is formed by
dividing the element’s total heat capacity C equally among its »
nodes. Hence, the mass assigned to each node is C/n. No special
distributory concepts are employed to distinguish between corner
and midside nodes, or to account for element distortion.
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2.4.6 Recommendations on use of elements

e The 9-node element is usually the most effective.

e The linear interpolation elements (3-node and 4-node) should
only be used in analyses when bending effects are not dominant. If
the 4-node element is used in problems where bending effects are
significant, incompatible modes should be activated.

¢ For nearly incompressible elastic materials, elasto-plastic
materials and creep materials, and when using plane strain or
axisymmetric elements, the use of the u/p mixed formulation
elements is recommended.

2.5 Solid elements — 3-D

2.5.1 General considerations

e 3-D solid elements are generated using the CHEXA, CPENTA ,
CTETRA and CPYRAM element connectivity entries. They
generate 6-, 5- and 4-sided 3-D elements. Typical 3-D solid
elements are shown in Fig 2.5-1.

e The PSOLID property ID entry is used for all of the supported
materials, except hyperelastic which uses PLSOLID.

e 3-D solid elements in Advanced Nonlinear Solution are
classified based on the number of nodes in the element, and the
element shape.

e Table 2.5-1 shows the correspondence between the different 3-
D solid elements and the NX element connectivity entries. Note
that the elements are frequently referred to just by their number of
nodes.

e Solution 701 only supports linear elements (4-node tetrahedron,
6-node wedge and 8-node brick elements).
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(a) 8-,20-and 27-node brick elements (CHEXA)

ANAvYAY

(b) 4-, 10- and 11-node tetrahedral elements (CTETRA)

() O£

(c) 6-,15-, and 21-node wedge elements (CPENTA)

(d) 5-, 13-, and 14-pyramid elements (CPYRAM)

Figure 2.5-1: 3-D solid elements
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3-D solid element

NX element connectivity entry

4-node tetrahedron

CTETRA

10-node tetrahedron' CTETRA
11-node tetrahedron' CTETRA and ELCV =1 in NXSTRAT
6-node wedge CPENTA
15-node wedge' CPENTA
21-node wedge' CPENTA and ELCV =1 in NXSTRAT
8-node brick CHEXA
20-node brick' CHEXA
27-node brick' CHEXA and ELCV = 1 in NXSTRAT
5-node pyramid CPYRAM
13-node pyramid' CPYRAM
14-node pyramid' CPYRAM and ELCV =1 in NXSTRAT

Note:
1. Only for Solution 601

Table 2.5-1: Correspondence between 3-D solid elements and NX
element connectivity entries

e Advanced Nonlinear Solution supports incomplete quadratic 3-
D elements for tetrahedral and pyramid elements. Incomplete
quadratic elements are not supported for brick and wedge elements.
For example, a CHEXA entry can only have 8 nodes or 20 nodes.
Anything in between is not supported. Also, a CTETRA can have
any of its midside nodes removed.

e For nonlinear analysis, stress/strain results for 3-D solid
elements are output in the element coordinate system. ELRESCS =
1 in NXSTRAT may be used to request output of nonlinear
stress/strain results in the material coordinate system. The option is
useful for post-processors that do not perform any transformation
of the stress/strain coordinate system when importing the op?2 file.
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e Note that the mid-volume and midsurface nodes in the 27-node,
21-node, 14-node and 11-node elements are automatically added by
Advanced Nonlinear Solution when ELCV is set to 1 in the
NXSTRAT entry. The boundary conditions at the added nodes are
predicted from the neighboring nodes.

ref. kJg ® The elements used in Advanced Nonlinear Solution are
Section 5.3 isoparametric displacement-based elements, and their formulation
1s described in ref. KJB, Section 5.3.

e The basic finite element assumptions for the coordinates are
(see Fig. 2.5-2, for the brick element):

xzzhixi y:ilhiyi Z:Zhizi

where
h; (r, s, t) = interpolation function corresponding to node i
r, s, t = isoparametric coordinates

g = number of element nodes
X, Vi» zz = nodal point coordinates
u;, vi, w; = nodal point displacements

e In addition to the displacement-based elements, special mixed-
interpolated elements are also available, in which the displacements
and pressure are interpolated separately. These elements are
effective and should be preferred in the analysis of incompressible
media and inelastic materials (specifically for materials in which
Poisson's ratio is close to 0.5, for rubber-like materials and for
elasto-plastic materials). Table 2.5-2 shows the number of pressure
degrees of freedom for each 3-D element type. For more details on
the mixed interpolation of pressure and displacement degrees of
freedom for 3-D solids, see Section 4.4.3, p. 276, and Tables 4.6
and 4.7, pp. 292 - 295 in ref. KJB.
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X

Figure 2.5-2: Conventions used for the nodal coordinates and
displacements of the 3-D solid element

3-D solid element p;;:?rt;e]r)ggs
4-node tetrahedron -
10-node, 11-node tetrahedron 4
6-node wedge 1
15-node, 21-node wedge 4
8-node brick 1
20-node, 27-node brick 4
5-node pyramid 1
13-node, 14-node pyramid 1

Table 2.5-2: Mixed u/p formulations available for 3-D solid elements

72 Advanced Nonlinear Solution — Theory and Modeling Guide



2.5: Solid elements — 3-D

e The mixed formulation is the default setting for hyperelastic
materials, and it can be activated for other materials, such as
elastic-plastic, creep, and elastic with high Poisson’s ratio, via the
UPFORM flag in the NXSTRAT entry.

e The use of the 8-node (one pressure DOF) or 27-node (4
pressure DOFs) element is recommended with the mixed
formulation.

e Note that 4 pressure degrees of freedom are used for the 10-
node tetrahedron, the 15-node wedge and the 20-node brick
element. Even though this setting does not satisfy the inf-sup test,
the elements generally perform better than with a single pressure
degree of freedom. Still, it is better to add the midside nodes if
possible. This is done by setting ELCV =1 in the NXSTRAT

entry.

¢ In addition to the displacement-based and mixed-interpolated
elements, Advanced Nonlinear Solution also includes the
possibility of including incompatible modes (bubble functions) in
the formulation of the 5-node pyramid, 6-node wedge and the 8-
node brick element. Within this element, additional displacement
degrees of freedom are introduced. These additional displacement
degrees of freedom are not associated with nodes; therefore the
condition of displacement compatibility between adjacent elements
is not satisfied in general. The addition of the incompatible modes
(bubble functions) increases the flexibility of the element,
especially in bending situations. For theoretical considerations, see
reference KJB, Section 4.4.1. Note that these incompatible-mode
elements are formulated to pass the patch test. Also note that
element distortions deteriorate the element performance when
incompatible modes are used.

The incompatible modes feature cannot be used in conjunction
with the mixed-interpolation formulation

e Table 2.5-3 shows which elements support incompatible modes
(bubble functions). The incompatible modes feature is only
available for the 5-node pyramid, 6- node wedge and the 8-node
brick elements.
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Support for
3-D solid element incompatible
modes

4-node tetrahedron No
5-to 11-node tetrahedron No
6-node wedge Yes
15-node, 21-node wedge No
8-node brick Yes
20-node, 27-node brick No
5-node pyramid Yes
6- to 14-node pyramid No

Table 2.5-3: Incompatible modes (bubble functions) available for 3-D
solid elements

e The interpolation functions used for 3-D solid elements for
g <20 are shown in Fig. 5.5, ref. KJB, p. 345 (note that ref KJB
uses a different local node numbering convention).

e The 10-node tetrahedron (see Fig. 2.5-1(c)) is obtained by
collapsing nodes and sides of rectangular elements. Spatially
isotropic 10-node and 11-node tetrahedra are used in Solution 601.

The 4-node tetrahedron (see Fig. 2.5-1(c)) is obtained by
collapsing nodes and sides of the 8-node rectangular element. This
element exhibits constant strain conditions.

e The stresses/strains can be output either at the center and corner
grid points (PSOLID STRESS=blank or GRID), or at the center
and corner Gauss points (PSOLID STRESS=1 or GAUSS).

2.5.2 Material models and nonlinear formulations

e See Tables 2-2 and 2-3 for a list of the material models that are
compatible with 3-D solid elements.
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e Advanced Nonlinear Solution automatically uses the mixed
interpolation formulation for hyperelastic materials. The mixed
formulation is also recommended for elastic-plastic materials and
elastic materials with a Poisson ratio close to 0.5. It can be
activated by setting UPFORM = 1 in the NXSTRAT entry.

e The 3-D elements can be used with
- small displacement/small strain kinematics,
- large displacement/small strain kinematics, or
- large displacement/large strain kinematics.

» The small displacement/small strain and large
displacement/small strain kinematics can be used with any of
the compatible material models, except for the hyperelastic
material. The use of a linear material with small
displacement/small strain kinematics corresponds to a linear
formulation, and the use of a nonlinear material with the
small displacement/small strain kinematics corresponds to a
materially-nonlinear-only formulation.

» The program uses the TL (total Lagrangian) formulation
when large displacement/small strain kinematics is selected.

» The large displacement/large strain kinematics can be used
with plastic materials including thermal and creep effects, as
well as hyperelastic materials. The ULH (updated
Lagrangian Hencky) formulation or the ULJ (updated
Lagrangian Jaumann) formulation can be used for all
compatible material models except the hyperelastic material.
For the hyperelastic material models, a TL (total Lagrangian)
formulation is used. The ULFORM parameter in the
NXSTRAT entry determines the ULH/ULJ setting.

ref. KIJB e The basic continuum mechanics formulations are described in
Sections 6.2 ref. KJB, pp. 497-568. The finite element discretization is
and6.35  gummarized in Table 6.6, p. 555, ref. KIB.
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ref. KIB
Section 6.8.1

¢ Note that all these formulations can be used in the same finite
element model. If the elements are initially compatible, they will
remain compatible throughout the analysis.

2.5.3 Numerical integration

ref. KJB
Sections 5.5.3,
5.5.4 and 5.5.5

e The 8-node brick element uses 2x2x2 Gauss integration for the
calculation of element matrices. The 20-node and 27-node elements

use 3x3x3 Gauss integration.

e Tetrahedral elements are spatially isotropic with respect to
integration point locations and interpolation functions. For the 4-
node tetrahedral element, 1-point Gauss integration is used. For the
10-node tetrahedral element, 17-point Gauss integration is used,
and 17-point Gauss integration is also used for the 11-node
tetrahedral element.

e Note that in geometrically nonlinear analysis, the spatial
positions of the Gauss integration points change continuously as
the element undergoes deformations, but throughout the response
the same material particles are at the integration points.

¢ The same integration order is used for both Solution 601 and
701.

2.5.4 Mass matrices

¢ The consistent mass matrix is always calculated using 3x3x3
Gauss integration except for the tetrahedral 4-node, 10-node and
11-node elements which use a 17-point Gauss integration.

e The lumped mass matrix of an element is formed by dividing
the element’s mass M equally among each of its # nodal points.
Hence the mass assigned to each node is M /n. No special
distributory concepts are employed to distinguish between corner
and midside nodes, or to account for element distortion.

e The same lumped matrix is used for both Solution 601 and
Solution 701.
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2.5.5 Heat transfer capabilities

e Heat transfer capabilities are available for all 3-D solid
elements.

e One temperature degree of freedom is present at each node.

e The element matrices are integrated numerically by Gauss
integration using the same integration order as the structural
matrices.

e The heat capacity matrix can be calculated based on a lumped or
consistent heat capacity assumption.

e The lumped heat capacity matrix of an element is formed by
dividing the element’s total heat capacity C equally among each of
its n nodal points. Hence the mass assigned to each node is C/n.
No special distributory concepts are employed to distinguish
between corner and midside nodes, or to account for element
distortion.

2.5.6 Recommendations on use of elements

e The linear interpolation elements (4- to 8-node) usually perform
better in contact problems.

e The linear interpolation elements (5-node, 6-node and 8-node
brick elements, without incompatible modes) should only be used
in analyses when bending effects are not dominant. If bending
effects are insignificant, it is usually best to not use incompatible
modes.

¢ Since the 4-node tetrahedron is a constant strain element, many
elements (fine meshes) must usually be used in analyses.

¢ For nearly incompressible elastic materials, elasto-plastic
materials and creep materials, the use of the u/p mixed formulation
elements is recommended.

e When the structure to be modeled has a dimension which is
extremely small compared with the others, e.g., thin plates and
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ref. KIB
Page 383

shells, the use of the 3-D solid element usually results in too stiff a
model and a poor conditioning of the stiffness matrix. In this case,

the use of shell elements, particularly the 4-node shell element (see
Section 2.3), is more effective.

Recommendations specific to Solution 601

e The 27-node element is the most accurate among all available
elements. However, the use of this element can be costly.

e The 20-node element is usually the most effective, especially if
the element is rectangular (undistorted).

2.6 Scalar elements — Springs, masses and dampers

2.6.1 CELASI1, CELAS2, CMASS1, CMASS2, CDAMP1, CDAMP2

e Scalar elements in Advanced Nonlinear Solution either connect
2 degrees of freedom together or just a single degree of freedom to
the ground. There are three forms of scalar elements: springs,
masses, and dampers.

» Spring elements are defined using the CELAS1 and
CELAS?2 element connectivity entries.

» Mass elements are defined using the CMASS1 and CMASS2
element connectivity entries.

» Damper elements are defined using the CDAMP1 and
CDAMP2 element connectivity entries.

e Fig. 2.6-1 shows the spring, mass and damper single degree of
freedom elements available in Advanced Nonlinear Solution. They
correspond to a grounded spring, a concentrated mass, and a
grounded damper, respectively.
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k Ul
O SN C =
Single Single Single Single
translational rotational translational rotational
DOF spring DOF spring DOF mass DOF mass
Stiffness K = [k] Mass M = [m]
(a) spring element (b) mass element
u
c c 6
g N
Single Single
translational rotational
DOF damper DOF damper

Damping C = [c]

(c) damper element

Figure 2.6-1: Single degree of freedom scalar elements

e Fig. 2.6-2 shows the available scalar elements connecting two
degrees of freedom. Only the translational version of the spring and
damper are shown in the figure, but they can connect rotational
degrees of freedom as well.

2.6.2 6-DOF spring element (Solution 601 only)

e The 6-DOF spring element is a generalized spring-damper
element which can be linear or materially-nonlinear only (MNO).
This element is defined using the CBUSH element connectivity
entries. It can have single node, two coincident or two non-
coincident nodes. In each degree of freedom, the element stiffness
can be defined as a constant or using a force-displacement curve in
the element coordinate system. The damping coefficients are
always constants in units of force per unit velocity.
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kK ) —»
K = 1 2
uU! .
a) spring element
c < .
- + |
_C C ._}—.
U! v
b) damper element
_m/2 0 ]
Iumped =
i O m/2_ m
m/3 m/6 u! v
consistent _m/6 m/ 3_

¢) mass element

Figure 2.6-2: Two-degrees-of-freedom scalar elements

e A displacement (skew) system can be used in the 6-DOF spring
element to prescribe loads and constraints. Element birth/death is
also supported. Currently, the 6-DOF spring element is not
supported in explicit dynamics analysis.

e Ifa 6-DOF spring element has single node or two coincident
nodes, its element coordinate system must be defined using a CID
as shown in Fig. 2.6-3 and Fig. 2.6-4. A single node 6-DOF spring
element corresponds to a grounded spring acting in the user-
specified degree of freedom.
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y-element
z-element

x-element

GA

Figure 2.6-3: 6-DOF spring element with single node

CID
y
z
Wx
y-element
z-element
x-element
GA, GB

Figure 2.6-4: 6-DOF spring element with two coincident nodes

e Ifa 6-DOF spring element has two non-coincident nodes, its
element coordinate system can be defined using a CID, an
orientation vector or its axial direction as shown in Figs. 2.6-5 to
2.6-7.

In Fig. 2.6-5, the element coordinate system is defined by a
CID. Note that GA and GB might or might not have displacement
(skew) coordinate systems.

“In Fig. 2.6-6, the element coordinate system is defined by an
orientation vector using GO or X1, X2, X3. Note that X1, X2, X3
refers to the displacement (skew) coordinate system of GA.

In Fig. 2.6-7, a 6-DOF spring element is defined with two non-
coincident nodes without GO, X1, X2, X3 or CID. This defines a 1-
D axial/torsional spring/damper. In this case, axial stiffness (or
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damping) or torsional stiffness (or damping) or both must be
specified but all other stiffness (or damping) must not be specified.

y-element

z-element

x-element

GA T TTTee—-ol

Figure 2.6-5: 6-DOF spring element with two non-coincident nodes

z-element y-element
(normal to plane)  (in plane) GO or (X1,X2,X3)
_v

GA T TTee--l_ x-element

B TT——

Figure 2.6-7: 1-D spring element with two non-coincident nodes
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2.7 R-type elements

e R-type elements impose multipoint constraints on one or more
nodes. The constraints are created automatically by the program
based on the element’s input. The following R-type elements are
supported in Advanced Nonlinear Solution: RBAR, RBE2 and
RBE3.

¢ Rigid elements are a subset of R-type elements that include
RBAR and RBE2.

o RBE3 is an interpolation constraint element which also
produces constraint equations.

2.7.1 Rigid elements

e Solution 601 provides several options for modeling the Rigid
elements. They can be modeled as perfectly rigid elements using
constraint equations or as flexible (but stiff) elements. The
EQRBAR or EQRBE2 parameters in the NXSTRAT entry
determine how the Rigid elements are treated.

e Solution 701 does not support the flexible option.

e The RBAR entry generates a single Rigid element between two
nodes.

e The RBE2 entry generates multiple Rigid elements. They
connect one independent node to several nodes.

o If'the perfectly rigid option is selected, Rigid elements are
internally represented either as standard multipoint constraints, or
as rigid links (see Section 5.8 for enforcement of constraint
equations). Multipoint constraints have constant constraint
coefficients and therefore do not give accurate results in large
displacements (unless the 2 nodes are coincident or the constraints
do not involve rotational degrees of freedom). Rigid links also
create multipoint constraints but with variable coefficients that are
updated based on the deformation of the structure. This is
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illustrated in Fig. 2.7-1. Therefore, whenever possible, large-
displacement rigid links are used.

—
. rotation
3 RBAR elements with
one independent node
—

using large displacement
rigid links

Figure 2.7-1: Difference between small displacement MPC and
large displacement rigid links

¢ Rigid elements that are internally represented as multipoint
constraints are affected by the general constraint setting (GENMPC
parameter in NXSTRAT). If constraints are set to general
constraints (GENMPC=1), the constraint is enforced using
Lagrange multipliers. Rigid elements represented by rigid links
(which have variable constraint coefficients) are not influenced by
the general constraint flag. They are always enforced using the
default master-slave constraint approach.

e Ifthe flexible option is selected for Rigid elements, Solution
601 internally generates beam or spring elements depending on the
Rigid element parameters and the distance between the nodes
(RBLCRIT parameter in NXSTRAT), or a spring element
translation can be always requested (in the EQRBAR parameter in
NXSTRAT).
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e The stiffness of the internal springs and the Young’s modulus
and cross-sectional area of the internal beams can be automatically
determined by Solution 601 or set by the user (see SPRINGK,
BEAME and BEAMA parameters in NXSTRAT entry).

o The rigid option results in more accurate enforcement of the
constraint. However, the compliance introduced in the model when
using the flexible option can lead to easier convergence in
nonlinear problems.

e The flexible option results in none of the degrees of freedom
becoming dependent. This allows multiple constraints to be defined
at a node, and it is sometimes beneficial for contact.

e A dependent degree of freedom of a constraint (standard, not
general constraint) or rigid link cannot be used in another constraint
or rigid link as an independent degree of freedom. Hence, chaining
of constraints is not allowed. Chaining of rigid links is enabled by
internally replacing the dependent node of each rigid link by the
first node in the chain (to avoid the restriction mentioned above).

Classification of Rigid elements

e The internal representation of an RBAR rigid element depends
on the options present in CNA, CNB, CMA and CMB, as shown in
Fig. 2.7-2.

GB

GA/
Independent: CNB

Dependent: CMB
Independent: CNA cpenden

Dependent: CMA

Figure 2.7-2: Relevant parameters in the RBAR rigid element

e Currently, Advanced Nonlinear Solution identifies 5 classes of
RBAR settings. Each class gets a different internal representation.
Checking for each class is done in sequence starting with Class 1.
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Class I:
All 6 degrees of freedom of one point are dependent on those of the
other point. In other words,

CNA =123456, CNB =0, CMA = 0, CMB = 123456
or
CNA =0, CNB = 123456, CMA = 123456, CMB =0

Class 2:

One point has all the dependent degrees of freedom (but not all 6 of
them), and all those that are not dependent (missing terms in CMA
or CMB) involve degrees of freedom that do not exist at the slave
node. For example,

CNA = 123456, CNB =0, CMA =0, CMB =123

where node B is attached only to 3D solid elements (so degrees of
freedom 456 do not exist).

Another example,
CNA =0, CNB = 123456, CMA =12,CMB =0

where node A is attached only to 2D solid elements (so degrees of
freedom 3456 do not exist)

Note that this only applies to non-existent degrees of freedom (not
fixed ones). If an excluded DOF is fixed then the rigid element
does not belong to this Class.

Class 3:
One point has all the dependent degrees of freedom (but not all 6 of
them). In other words,

CNA =123456,CNB=0,CMA =0,CMB =Q

or
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CNA =0, CNB = 123456, CMA =Q,CMB =0

where Q is any combination of the 6 DOFs except “0” and
“123456” (“0” is not allowed, and “123456” belongs to Class 1).
Note that if the degrees of freedom not included in Q are all non-
existent at the node, then the rigid element belongs to Class 2.

Class 4:
All 6 degrees of freedom active but not all dependent degrees of
freedom belong to 1 point. For example,

CNA CNB CMA CMB
123 456 0 0
12346 5 5 12346
Class 5:

Not all the 6 degrees of freedom are active in the constraint and
rigid element fails criteria for Classes 2 and 3. For example,

CNA CNB CMA CMB

123 456 4 3

Note that there are some other valid settings for RBAR that are
not supported in Advanced Nonlinear Solution.

o The internal representation of Rigid elements for each class is
described in Table 2.7-1.

Rigid option Flexible option
L< Lcrit L> Lcrit L< Lcrit L> Lcrit
Class 1 MPC Rigid link' Springs Beam'
Class 2 MPC Rigid link' Springs Beam'
Class 3 MPC Rigid link' Springs Springs
Class 4 MPC MPC Springs Beam'
Class 5 MPC MPC Springs Springs

Table 2.7-1: Internal representation of Rigid elements

'This constraint is accurate in large displacement analysis
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e RBE?2 is interpreted in the same manner as RBAR except that it
produces multiple Rigid elements. These elements can only belong
to Class 1 or 3, and their internal representation is dictated by the
EQRBE?2 parameter in NXSTRAT.

2.7.2 RBE3 element

¢ The RBE3 R-type element defines the motion of a reference
node as a weighted average of the motion of a set of other nodes.
This element is a useful tool for distributing applied load and mass
in a model. It is internally represented in Advanced Nonlinear
Solution with multipoint constraints.

2.8 Other element types
2.8.1 Gap element

e The gap element is used in Advanced Nonlinear Solution to
connect two nodes as shown in Fig. 2.8-1. Gap elements are
defined using the CGAP element connectivity entry.

Figure 2.8-1: CGAP element coordinate system

¢ The initial gap opening is Uy. When the gap is closed the
element has a stiffness of K4 (should be stiff), and when it is open
the stiffness is Kg (should be soft).
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e The tangential behavior of the gap element represented by KT,
MUI and MUZ is not supported.

2.8.2 Concentrated mass element

e Advanced Nonlinear Solution supports the CONMI1 and
CONM2 entries for defining concentrated masses.

e For CONMI, only the diagonal mass terms are supported, and
the resulting mass matrix is given by:

‘M, 0 0 0 0 0 |
0O M, 0 0 0 0
0O 0 My, 0 0 0
M:
o 0 0 M, 0 0
o 0 0 0 M, 0
00 0 0 0 My

e For CONM2, the off-diagonal mass moments of inertia terms
are neglected, and the resulting mass matrix is

M 0 0 0 0 0
0O M 0 0 0 0
0 0 M 0 0 0

M=
0 0 0 I, 0 0
0 0 0 0 I, 0
0 0 0 0 0 I,

2.8.3 Bushing element

e The one-dimensional bushing element CBUSHI1D is used in
Advanced Nonlinear Solution to provide an axial stiffness and
damping between two nodes as shown in Fig. 2.8-2.
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mly
GA GB

AW\~

Figure 2.8-2: BUSH1D element

e The stiffness and damping act along the axis of the element,
which is the line connecting its two nodes. In large displacement
analysis the element axis is updated with deformation. A fixed
element axis can be specified via the CID parameter in the
CBUSHID entry.

e The element can have a constant or a nonlinear stiffness defined
via a lookup table.
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3. Material models and formulations

The objective of this chapter is to summarize the theoretical basis and practical
use of the material models and formulations available in Advanced Nonlinear
Solution.

The stress and strain measures used by different materials and formulations
are first summarized in Section 3.1.

The table below lists the material models available in Advanced Nonlinear
Solution, and how they can be obtained from the material entry cards. Note that
Tables 2-2 and 2-3 list the acceptable combinations of elements and material
properties for Solutions 601 and 701.

Material Entries Advanced Nonlinear Solution material Sol 701
availability’

MATI1 Elastic isotropic v

MATI1, CREEP Elastic-creep

MATI1, CREEP, Thermal elastic-creep

MATTC

MATI, MATG Gasket

MATI, MATS1? Elastic isotropic nonlinear’ 4

MATI, MATS1* Elasto-plastic 4

MATI, MATS1¢ Thermal elasto-plastic 4

MATI1, MATSI, Thermal elasto-plastic, temperature- v

MATTI1° dependent elastic properties

MATI1, MATS1’ Thermal elasto-plastic, temperature- 4
dependent plastic properties

MATI1, MATSI, Thermal elasto-plastic, temperature- v

MATT1’ dependent elastic and plastic properties

Table 3.1: Material models available in Advanced Nonlinear Solution
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Material Entries Advanced Nonlinear Solution material Sol 701
availability'
MATI1, MATSI, Plastic-creep
CREEP®
MATI1, MATSI, Plastic-creep with temperature-dependent
CREEP, MATT1®  properties
MATI1, MATSI, Thermal plastic-creep, temperature-
CREEP’ dependent plastic properties
MATI, MATSI, Thermal plastic-creep, temperature-
MATTI, CREEP’ dependent elastic and plastic properties
MATI1, MATSI, Thermal plastic-creep, temperature-
CREEP, MATTC®  dependent creep properties
MATI1, MATSI, Thermal plastic-creep, temperature-
MATTI1, CREEP, dependent elastic and creep properties
MATTC®
MATI1, MATSI, Thermal plastic-creep, temperature-
CREEP, MATTC®  dependent plastic and creep properties
MATI, MATSI, Thermal plastic-creep, temperature-
MATTI1, CREEP, dependent elastic, plastic and creep
MATTC’ properties
MAT2 Elastic orthotropic (surface elements) v
MAT2, MATT2 Thermal elastic orthotropic (surface v
elements)
MATS3 Elastic orthotropic (2D axisymmetric
elements)
MATT3, MAT3 Thermal elastic orthotropic (2D
axisymmetric elements)
MAT4 Isotropic heat transfer
MAT4, MATT4 Temperature dependent isotropic heat

transfer

Table 3.1: Material models available in Advanced Nonlinear Solution

(continued)
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Material Entries Advanced Nonlinear Solution material Sol 701
availability'

MATS Orthotropic heat transfer

MATS, MATTS Temperature dependent orthotropic heat
transfer

MATS Elastic orthotropic (surface elements) v

MATS, MATTS Thermal elastic orthotropic (surface v
elements)

MAT9 Elastic orthotropic (solid elements) v

MAT9, MATT9 Thermal elastic orthotropic (solid v
elements)

MATI1 Elastic orthotropic (solid elements) v

MATI1, MATT11  Thermal elastic orthotropic (solid v
elements)

MATHE Hyperelastic (Mooney-Rivlin, Ogden, 4
Arruda-Boyce, Sussman-Bathe and
Hyperfoam)

MATHP Hyperelastic (Mooney-Rivlin only) v

MATSMA Shape memory alloy (SMA)

MATVE Viscoelastic

Notes:

1. Temperature interpolation at the start of the analysis only in Solution 701.

2. With MATS1 TYPE=NELAST.

3. Cannot be used with beam element for SOL 601. Can only be used with rod element
for SOL 701.

4. With MATS1 TYPE=PLASTIC.

5. With MATS1 TYPE=PLASTIC and TID pointing to a TABLEST entry.

6. With MATS1 TYPE=PLASTIC and TID pointing to a TABLESI entry.

7. Only Mooney-Rivlin, Ogden and Sussman-Bathe hyperelastic materials are available
in Solution 701.

Table 3.1: Material models available in Advanced Nonlinear Solution
(continued)
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3.1 Stress and strain measures

e It is important to recognize which stress and strain measures are
employed in each material model: this is necessary in the
preparation of the input data and the interpretation of the analysis
results.

e This section summarizes the stress and strain measures in
Advanced Nonlinear Solution and how they are used with the
different element types and nonlinear features. More details on
stress/strain measures are provided in ref. KJB, Section 6.2.

3.1.1 Kinematic formulations

Small displacement/small strain kinematics

Input of material parameters: All elements and material models
use the engineering stress-engineering strain relationship.

Output: All elements and material models output Cauchy stresses
and engineering strains.

e Using a linear material model with small displacement/small
strain kinematics results in a linear finite element formulation.

¢ Using a nonlinear material model with small displacement/small
strain kinematics results in a materially-nonlinear only (MNO)
formulation.

Large displacement/small strain kinematics

Input of material parameters: 2™ Piola-Kirchhoff stresses and
Green-Lagrange strains. Note that under small strain conditions, 2™
Piola-Kirchhoff stresses are nearly equal to engineering stresses,
and Green-Lagrange strains are nearly equal to engineering strains.
Strains should be less than 2%.

Output: The output depends on the element type. Note that as long
as the strains are small, Green-Lagrange strains are practically the
same as engineering strains in the element coordinate system.
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Similarly, 2" Piola-Kirchhoff stresses are practically the same as
Cauchy stresses in the element coordinate system.

(1) 2-D, 3-D solid elements: all supported material models
output Cauchy stresses and Green-Lagrange strains.

(2) Shell elements: all supported material models output 2™
Piola-Kirchhoff stresses and Green-Lagrange strains.

(3) Rods and beams: all supported material models output
Cauchy stresses and engineering strains in the element
coordinate system.

Large displacement/large strain kinematics

This kind of formulation can only be used with 2-D and 3-D solid
elements and with shell elements.

For 2-D and 3-D solid elements

(1) Both the updated Lagrangian Hencky formulation and the
updated Lagrangian Jaumann formulation can be used with
elastic-plastic materials (including thermal and creep effects). In
this case,

Input of material parameters: Cauchy (true) stresses and
logarithmic (true) strains.

Output:
ULH formulation: Cauchy stresses and logarithmic
strains in the element coordinate system.
ULJ formulation: Cauchy stresses and Jaumann strain

(2) For hyperelastic materials a total Lagrangian formulation is
used. In this case,

Input of material parameters: Hyperelastic material
constants.

Output: Cauchy stresses and Green-Lagrange strains in the
element coordinate system.
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For shell elements

Both the updated Lagrangian Jaumann (ULJ) formulation and the
updated Lagrangian Hencky (ULH) formulation can be used. For
more details on how these formulations apply to shell elements, see
Section 2.3.

Input of material parameters: Cauchy (true) stresses and
logarithmic (true) strains.

When the ULJ formulation is used:
Output: Cauchy stresses and Jaumann strains.
When the ULH formulation is used:

Output: Kirchhoff stresses and left Hencky strains
(practically equivalent to Cauchy stresses and logarithmic
strains).

3.1.2 Strain measures

The strain measures used in Advanced Nonlinear Solution are
illustrated here in the simplified case of a rod under uniaxial
tension (see Fig. 3.1-1).

A AL
O~ TN v . .
N A, = initial cross-sectional area
S = final cross-sectional
F = applied force

Lo =1y +AL

N

Figure 3.1-1: Rod under uniaxial tension
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L . -1,
Engineering strain: e = J
0
2 g2
Green-Lagrange strain: €= 17 5 b
2 1

Logarithmic strain, Hencky strain, Jaumann strain:

/
e=In i =Iﬁ
4, 0L

Stretch: A= i
EO

e Note that for the small strains assumption to be valid, the strains
should be less than about 2%.

ref. kJ8  ® Green-Lagrange strains are used in the large displacement/small
Sec.6.2.2  strain formulations. This is because this strain measure is invariant
with respect to rigid-body rotations. Therefore, for small strains,
Green-Lagrange strains and the rotated engineering strains are
equivalent.

¢ Engineering strains are also called nominal strains in the
literature.

¢ Logarithmic strains are also known as true strains.
3.1.3 Stress measures

The stress measures used in Advanced Nonlinear Solution include
engineering stresses, 2™ Piola-Kirchhoff stresses, Kirchhoff
stresses, and Cauchy stresses (see ref. KJB). These stress measures
are illustrated here in the simplified case of a rod under uniaxial
tension (see Fig. 3.1-1).

Engineering stress: o=

£
4,
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Cauchy stress: = F_ ody
A A
2™ Piola-Kirchhoff stress: S = F—fo = G—EO
Al /
Kirchhoff stress: Jr= ik - O-_g
AOEO 60

e Cauchy stresses are also called true stresses in the literature.

e For the case in which the material is incompressible,

ol
7 =J7 =— can be used to compute the Cauchy stress and the
0

Kirchhoff stress from the engineering stress.

e When the strains are small, the 2™ Piola-Kirchhoff stresses are
nearly equal to the Cauchy stresses from which the rigid body
rotations of the material have been removed.

e When the volume change of the material is small, the Kirchhoff
stresses are nearly equal to the Cauchy stresses.

¢ Since Kirchhoff stresses are input/output only for large strain

analysis with materials that are nearly incompressible, practically
speaking, the differences between Kirchhoff and Cauchy stresses
are negligible.

3.1.4 Large strain thermo-plasticity and analysis with the ULH
formulation

o This section discusses the ULH formulation for large strain
analysis. ULH stands for updated Lagrangian Hencky.

o The following is a quick summary of the theory of large strain
inelastic analysis with the ULH formulation. For further
information, see ref KJB, Section 6.6.4 and also the following
references:
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ref.  F.J. Montans and K.J. Bathe, "Computational issues in
large strain elasto-plasticity: an algorithm for mixed
hardening and plastic spin", Int. J. Numer. Meth. Engng,
2005; 63;159-196.

ref. M. Koji¢ and K.J. Bathe, Inelastic Analysis of Solids and
Structures, Springer-Verlag, 2003.

Total deformation gradient tensor: Let X be the total
deformation gradient tensor at time ¢ with respect to an initial
configuration taken at time 0. For ease of writing, we do not
include the usual left superscripts and subscripts.

Polar decomposition into rotation and right stretch tensor: The
total deformation gradient tensor X can be decomposed into a
material rigid-body rotation tensor R and a symmetric positive-
definite (right) stretch tensor U (polar decomposition):

X=RU (3.1-1)

Principal directions of right stretch tensor: The right stretch
tensor U can be represented in its principal directions by a diagonal
tensor A , such that

U=R,AR] (3.1-2)

where R, is arotation tensor with respect to the fixed global axes
(see Figure 3.1-2).

(Note that the rotation R, does not correspond to a material
rigid-body rotation, but to a rotation of the coordinate system: U
and A are two representations of the same deformed state,
respectively in the global coordinate system and in the U principal
directions coordinate system.)
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(0) Initial configuration at time 0
"""" Configuration at time t not including rigid body rotation
()  Configuration at time t

Wt) Directions of maximum/minimum total stretches
and strains

R Material rigid-body rotation between time 0 and time t

R, Directions of initial configuration fibers with
maximum/minimum total stretches and strains

Figure 3.1-2: Directions of maximum/minimum
total stretches and strains

Right Hencky strain tensor: The Hencky strain tensor (computed
in the right basis) is given by

Ef=lnU=R,InAR] (3.1-3)
The superscript “R” symbolizes the right basis.
Polar decomposition into rotation and left stretch tensor: The
total deformation gradient tensor X can also be decomposed into a
material rigid-body rotation R and a symmetric positive-definite
(left) stretch tensor V (polar decomposition):

X=VR (3.1-4)

Rin (3.1-4) is the same as R in (3.1-1).
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Principal directions of left stretch tensor: The left stretch tensor
V can be represented in its principal directions by a diagonal tensor
A, such that

V=R,AR] (3.1-5)

where R, is a rotation tensor with respect to the fixed global axes.
Note that R, =R R, .

Left Hencky strain tensor: The Hencky strain tensor (computed
in the left basis) is given by

E'=InV=R,InAR] (3.1-6)
The superscript “L” symbolizes the left basis.

Comparison of left and right Hencky strain tensors: The
principal values of the left and right Hencky strain tensors are
identical, and equal to the logarithms of the principal stretches.
Hence both of these strain tensors can be considered to be
logarithmic strain tensors. However, the principal directions of the
left and right Hencky strain tensors are different. The principal
directions of the right Hencky strain tensor do not contain the rigid
body rotations of the material, but the principal directions of the
left Hencky strain tensor contain the rigid body rotations of the
material.

Therefore, for a material undergoing rigid body rotations, the
principal directions of the right Hencky strain tensor do not rotate,
however the principal directions of the left Hencky strain tensor
rotate with the material. Hence, the left Hencky strain tensor is
preferred for output and visualization of the strain state.

Multiplicative decomposition of deformation gradient in
inelastic analysis: In inelastic analysis, the following
multiplicative decomposition of the total deformation gradient into

an elastic deformation gradient X” and an inelastic deformation
gradient X” is assumed:

X=X"X" (3.1-7)
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To understand (3.1-7), consider a small region of material under
a given stress state with deformation gradient X. If this region of
material is separated from the rest of the model and subjected to the
same stress state, the deformation gradient is still X. Now if the
stress state is removed, (3.1-7) implies that the deformation
gradient of the unloaded material is X” . The stresses are due
entirely to the strains associated with the elastic deformation
gradient X” .

It can be shown (see Montans and Bathe), that (3.1-7) is
equivalent to the additive decomposition of the displacements into
elastic displacements and plastic displacements.

For the materials considered here, det X" =1.

Polar decomposition of elastic deformation gradient: The elastic
deformation gradient can be decomposed into an elastic rotation

tensor R” and elastic right and left stretch tensors U”, V*:
X’ =R U=V R" (3.18-a,b)

Elastic Hencky strain tensors: The elastic Hencky strain tensors
in the right and left bases are given by

E* =InU”, E* =InV* (3.1-9a,b)

Stress-strain relationships: The stresses are computed from the
elastic Hencky strain tensors using the usual stress-strain law of
isotropic elasticity. However, the stress measures used depend upon
the strain measures used. When the right Hencky strain measure is
used, the stress measure used is the rotated Kirchhoff stress

T=(R*) JrR* (3.1-10)

and when the left Hencky strain measure is used, the stress measure
is the (unrotated) Kirchhoff stress Jtr . J =det X is the volume

change of the material, and, using detX” =1, J =detX" .

With these choices of stress and strain measures, the stresses
and strains are work-conjugate.
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The choice of right Hencky strain and rotated Kirchhoff stresses
gives the same numerical results as the choice of left Hencky strain
and (unrotated) Kirchhoff stresses.

Implementation notes: For 2-D and 3-D solid elements, the
difference between the Cauchy and Kirchhoff stresses is neglected.
The stress measure used with the right Hencky strains is

T= (RE )T 7 R” . The input of material properties is assumed to be

in terms of Cauchy stresses, and the output of stresses is in terms of
Cauchy stresses.

For shell elements, Kirchhoff stresses are used throughout. The
input of material properties is assumed to be in terms of Kirchhoff
stresses, and the output of stresses is in terms of Kirchhoff stresses.

These assumptions are justified because they are used with
material models in which the plastic deformations are
incompressible and the plastic deformations are generally much
larger than the elastic deformations.

3.1.5 Large strain thermo-plasticity analysis with the ULJ formulation

o This section discusses the ULJ formulation for large strain
inelastic analysis (ULJ formulation). ULJ stands for updated
Lagrangian Jaumann.

e The following is a quick summary of the theory of large strain
inelastic analysis with the ULJ formulation:

For further information, see ref KIB, Section 6.2.2 and also the
following reference:

ref. M. Koji¢ and K.J. Bathe, Inelastic Analysis of Solids and
Structures, Springer-Verlag, 2003.

Velocity gradient tensor: The velocity gradient tensor is defined
as

L:{at”f})’o{-‘ (3.1-11)
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Notice that the derivative is taken with respect to the current
coordinates.

Rate of deformation tensor, spin tensor: The rate of deformation
tensor is defined as

1 r
D=5(L+L ) (3.1-12)

and the spin tensor is defined as

1 r
W=E(L—L) (3.1-13)

D is the symmetric part of L and W is the skew-symmetric part of
L.

Rate of change of Jaumann strain tensor: The rate of change of
the Jaumann strain is defined as

¢ =D+We’ —¢'W (3.1-14)

The quantity €’ is termed the Jaumann strain in analogy with the
more often-used Jaumann stress. But we do not use the Jaumann
stress in the ULJ formulation.

Jaumann strain tensor: In practice, increments are used in
computing the Jaumann strain tensor, i.e.

ragl =gl (DA HWAL) ') '’ (WAL)  (3.1-15)

Comparison of Jaumann strain with left Hencky strain: When
the rate of change of the principal directions of the left stretch
tensor V is zero, the rate of change of the left Hencky strain is the
same as the rate of change of the Jaumann strain. Hence the
Jaumann strain can be used as an approximate replacement for the
left Hencky strain. The Jaumann strain can be computed more
efficiently than the left Hencky strain, because it is not necessary to
take the square root or logarithm of a tensor when computing the
Jaumann strain. On the other hand, the time step size affects the
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3.1: Stress and strain measures

Jaumann strain, so that finite time step sizes lead to an error in the
calculation of the Jaumann strain.

For a uniaxial deformation, the Jaumann strain approaches the
logarithmic strain as the step size is reduced. For a rigid-body
rotation, the Jaumann strain also rotates, with the rotation of the
Jaumann strain approaching the expected rotation as the step size is
reduced.

It can also be shown that the Jaumann strain is path-dependent
in general, so that a deformation history in which the final
deformations equal the initial deformations can produce (non-
physical) non-zero Jaumann strains, even in the limit of
infinitesimally small time steps.

Stress-strain relationships: In elasto-plasticity, the same
algorithms are used as in small-strain elasto-plasticity. The
mechanical strains are computed as the total strains minus the
plastic strains (and also any thermal strains), in which the total
strains are the Jaumann strains.

As in the ULH formulation, the stresses are Cauchy stresses for
2-D / 3-D elements, and are Kirchhoff stresses for shell elements.

3.1.6 Thermal strains

e Calculation of thermal strains is needed for temperature-
dependent material models (thermo-elastic isotropic, thermo-elastic
orthotropic, thermo-plastic), as well as temperature-invariant
material models with non-zero thermal expansion coefficients.

e The current temperature ‘€ and the initial temperature

0 (corresponding to zero thermal strains) are both needed for the

calculation of thermal strains. The current temperature field is set
via the TEMPERATURE(LOAD) case control entry, while the
initial temperature is set via the TEMPERATURE(INITIAL) case
control entry. See Section 5.6 for more details.

o The temperature at an integration point is evaluated based on
the nodal temperatures and the element shape functions, and then
used to calculate the thermal strains.
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e For isotropic temperature independent materials, the following
expression is used for thermal expansion.

‘e =a('0-0)s, (3.1-16)

ij
where 0, is the Kronecker delta (6, = 1 fori=j and &, =0 for
i#j).

o If the thermal expansion is temperature dependent and isotropic,
the thermal strains are calculated as follows:

‘e ='a('0-"0)s, (3.1-17)
where
t = 1 t t
a =m(a( 0)('0— 0y )~ (°0)(°0—Opy )
(3.1-18)

and 6, is the material reference temperature.

e For temperature independent orthotropic materials Eq. (3.1-16)
is replaced by a thermal expansion coefficient vector,

Lo :ai(’é?— 09)5 (no summation over i)  (3.1-19)

ij ij

¢ For temperature dependent orthotropic materials Eq. (3.1-17)
and Eq. (3.1-18) are modified for each direction similar to Eq.
(3.1-19).

e Equations (3.1-17) and (3.1-18) are derived as follows: Suppose
that, from experimental data, the dependence of the length of a bar
as a function of temperature is obtained, as shown in Fig. 3.1-3.
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— Secant to curve—_

OrEr 0
Temperature, 0

Figure 3.1-3: Length of bar vs. temperature

The thermal strain with respect to the reference length may be
calculated as

L-L
R REF

LREF

Then we define the mean coefficient of thermal expansion for a
given temperature as follows:

022

With this definition, the secant slope in Fig. 3.1-3 is L. & ((9) .
Now, in Solution 601, we assume that the thermal strains are
initially zero. To do this, we subtract the thermal strain
. 0 .
corresponding to "6 to obtain

(TH :a(tg)(fg_gREF)—a(oé’)(oe—eREF)

which leads to Equations (3.1-17) and (3.1-18).
Notice that if the mean coefficient of thermal expansion is

constant, &, no longer enters into the definition of ‘& and the
equations reduce to Eq. 3.1-16. In general, when the mean
coefficient of thermal expansion is not constant, &, must be
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chosen based on knowledge of the experiment used to determine
a (9) since the same material curve, different choices of @,

yield different values of (9) )

3.2 Linear elastic material models

e The following material models are discussed in this section:

Elastic-isotropic: isotropic linear elastic non-thermal dependent
material model obtained with MAT1

Elastic-orthotropic: orthotropic linear elastic non-thermal
dependent material model obtained with MAT2 and MATS for
surface elements and MAT9 and MAT11 for 3-D solid elements

e These models can be employed using small
displacement/small strain or large displacement/small strain
kinematics. The strains are always assumed to be small.

e Thermal strains are supported for the elastic isotropic materials
and the elastic-orthotropic materials.

e When the elastic-isotropic and elastic-orthotropic materials are
used with the small displacement formulation, the formulation is
linear.

¢ If the material models are employed in a large displacement
analysis, the total or the updated Lagrangian formulation is
automatically selected by the program depending on which
formulation is numerically more effective. 2-D, 3-D solid elements
and shell elements use a total Lagrangian (TL) formulation, while
rods and beams use an updated Lagrangian (UL) formulation.

¢ In the small displacement formulation, the stress-strain
relationship is

t ot
0=C e
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. . t . . t . . .
in which ;o = engineering stresses and e = engineering strains.

e In the large displacement total Lagrangian formulation, the

stress-strain relationship is
ref. KIB

Section 6.6.1 p ;
S=C ¢

in which E)S = second Piola-Kirchhoff stresses and 68 = QGreen-

Lagrange strains.

¢ In the large displacement formulation, used by rod and beam
elements, the stress-strain relationship is

t*

‘1=Cle

. . * . . .
in which 't = Cauchy stresses and j&¢" = rotated engineering strain.

e In the presence of thermal strains the following stress-strain
relationship is used instead in small displacement analysis:

t _ t t \TH
0cr—C(Oe—Oe )

where | e’ are the thermal strains. A similar j ¢ and {¢™" term is

added for the TL and UL formulations, respectively. The
calculation of thermal strain is detailed in Section 3.1.6.

e The same matrix C is employed in all of these formulations. As
long as the strains remain small, the difference in the responses is
negligible.

e However, if the strains are large, the difference in the response
predictions is very significant (see ref. KIB, pp 589-590). If the
strains are large, it is recommended that these linear elastic material
models not be used.
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3.2.1 Elastic-isotropic material model

e This material model is available for the rod, 2-D solid, 3-D
solid, beam, and shell type elements.

¢ The two material constants used to define the constitutive
relation (the matrix C) are

E = Young's modulus, v = Poisson's ratio

o The thermal expansion coefficient a is also used if thermal
strains are present.

3.2.2 Elastic-orthotropic material model

o The elastic-orthotropic material model is available for the 2-D
solid, 3-D solid and shell elements.

e Material constants are defined along material axes (1,2,3). The
local constitutive matrix C, 1s then transformed to obtain the
stress-strain matrix C corresponding to the global coordinate
system.

o The thermal expansion coefficient a is also used if thermal
strains are present.

e The different Poisson’s ratios always satisfy the following
relationship

<

le.

E,

i —
E,

e In addition, to ensure that the material constants result in a
positive definite constitutive matrix, the following inequalities must
hold:

1
|V..|<(2j2 i,j=a,b,c
Ji E > P T

i
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3-D solid elements: The orthotropic 3-D material is defined either
using the MAT9 entry or the MAT11 entry. When the MAT9 entry
is used, the following assumptions are made:

Ciu=Ci5=Cis=Couy=Crs=Crs=C35=C35=C3=0

and
Cys=Cy=

resulting in

C56 =0.
on
symmetric

Q!

3

S0

3

agooo

=

oS O O O

CS 5

S O O O O

C66

When the MAT11 entry is used, the following inverse stress-strain
relationship is used:

e, | [ 1/E
€ -V, / E,
€3 | | Vi / E,
T2 B 0
Y23 0

vu] L 0

Vi /El
1/ E,
—Vy, 1 E;
0
0
0

-,/ E,
—v,, / E,
1/E,
0

S O O O O

The MATCID entry can be used to define the material coordinate
system (when using either the MAT9 or MAT11 entries).

Advanced Nonlinear Solution — Theory and Modeling Guide

111



Chapter 3: Material models and formulations

Shell elements: The orthotropic shell material is preferably defined
using the MATS entry, which leads to the following inverse stress-
strain relationship defined in the shell material coordinate system

(1,2,3):
e, | [ 1VE, —v,/E 0 0 0 |[o,]
ey | |-V, /E, 1/E, 0 0 0 | oy
Yo |=| O 0 1/G, 0 0 | o,
Yis 0 0 0 1/G. 0 | o,
v | O 0 0 0 1/G, ||oy]

The MAT?2 entry can also be used to define a shell material with
only in-plane orthotropy:

_611 | _Cll G, 0 0 0] _ell |
01 C, G, 0 0 0 | e
T, (=] 0 0 G 0 U
T3 0 0 0 G 0 |l

| Tz | | 0 0 0 0 C33_ _V23J

2-D axisymmetric solid elements: The orthotropic 2-D material is
defined using the MAT3 command. This leads to the following
stress-strain relationship defined in the (x,0,z) plane:

Ce. ] T v, v, 0__6)6?
E, E, E,
€ ) L _V 0 | o,
| EE E.
Vi Vo: 1
“IE R B )
0 0 0 L
vl | G, )| %
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3.3 Nonlinear elastic material model

e Advanced Nonlinear Solution supports the nonlinear elastic
material for the rod, 2-D solid, 3-D solid and shell elements. The
nonlinear effect is obtained with a MATSI entry which has

TYPE = ‘NELAST’. The formulations used for the rod element are
slightly different (and simpler) and are detailed in Section 3.3.1.

e This material uses a nonlinear elastic uniaxial stress-strain data
input in tabular form and shown in Fig. 3.3-1. This material is not
based on the classical theory of finite elasticity, and is not intended
for large strain analysis. However, it is a useful material model
when used appropriately, and with awareness of its limitations.

¢ Note that the material unloads along the same curve, so that no
permanent inelastic strains are introduced.

e The material can have different stress-strain curves in tension
and compression. Under predominantly uniaxial tension or
compression, the material response will follow the input curve
exactly. Under shear dominated loading, the stress is interpolated
from both tension and compression parts of the material stress-
strain curve.

o AC
— -7
-

N

N

i

W

Figure 3.3-1: Stress-strain behavior of nonlinear elastic material
model
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e In order to use the unaxial stress-stain data & (&) of Fig. 3.3-1,

the effective stress and strain (& and & ) must be calculated based
on the 2-D or 3-D total stress and strain tensors (6 and € ). The
von-Mises stress is used as the effective stress, while the effective
strain is based on

j Gdz = jona (3.3-1)

which equates the deformation work per unit volume in unaxial
loading to the multi-dimensional state. This results in a unique
equation for £ as a function of €, v and the stress-strain state that
depends on the element type.

e The effective strain, £, is defined by

1 _
EEO‘C"Z

1
=—g'Ce (3.3-2)
2
where E is Young’s modulus which is determined by the most
stiff region of the input stress-strain curve, C, is the elastic stress-

strain matrix obtained using £, and v . ( E, cancels out from both

sides of Eq. (3.3-2))
Differentiating Eq. (3.3-2) with respect to the total strain, we
have

dg = L_sTCOda (3.3-3)
o€

Substituting Eq. (3.3-3) into Eq. (3.3-1), the stresses can be
expressed in terms of total strains, i.e.,

6=——C, (3.3-4)
08

or
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6=——=0 (3.3-5)

where 6, = Cos which is the elastic trial stress.

e The effective stress o is taken from the tensile part of the
stress-strain curve for predominantly tensile loading, from the
compression part of the stress-strain curve for predominantly
compression loading and is interpolated between the two curves
otherwise.

e The consistent tangent stress-strain matrix is obtained by
differentiating Eq. (3.3-4) or (3.3-5) with respect to the total strain
tensor. The stress-strain matrix is symmetric in predominant tensile
or compression loading (when only one of the two material curves
is used), and is non-symmetric otherwise (when interpolation
between the curves is required). The constitutive matrix is
symmetrized and in most cases reasonable convergence is obtained.

¢ Note that discontinuities are not allowed in user-supplied stress-
strain curve. The table look-up is performed using linear
interpolation within the table and linear extrapolation outside the
table using the two starting or ending points.

Stress update algorithm

, t+Atu(z‘ t+AtG(z’)

For an iteration 7, given ‘'c,'e ), E,, v ,update

b

t+At8(i)

t+At8(i)

Step 1. Calculate the new total strain state based on

displacements " u"”

Step 2. Calculate the elastic trial stress,
t+AtGe — Co t+At£ (33-6)

Step 3. Compute the magnitude of the effective strain, £ .
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Step 4. Calculate the ratio

r=C—2x (3.3-7)
O

where C is a constant that biases the general stress state towards
the pure tension or compression curves and is internally set to 3/2,

I, is the first elastic stress invariant, and **' &, is the effective

elastic stress which is calculated as follows,
t+At Ee — EO t+AtE (33-8)
Restrict 7 to be between -1 and 1.

Step S. Calculate the effective stress in tension &, and in

compression &, , based on the user-supplied stress-strain curve and
g , as follows:

t+At — __t+At

G, =" o("e) (3.3-9)

t+At5 — M 5(_I+At 5) (33_10)

C
Step 6. Calculate the actual effective stress, ™ & , as

t+At5:l—grt+At5t+1;rt+Atgc (33_11)

Step 7. Evaluate the new stress state by

t+At —

(o)
t+AtG — WHNGE (33_12)
0

Step 8. Evaluate the tangential stress-strain matrix and symmetrize
it.
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3.3.1 Nonlinear elastic material for rod element

e For the rod element, the stress-strain relationship is defined as a
piecewise linear function, as shown in Fig. 3.3-2.

Stress A

L 2

[ A P R

O4
€ e es|/: :
: : 03¢y es €6 Strain

-{ 02

I )

Figure 3.3-2: Nonlinear elastic material for rod elements

Note that the stress is uniquely defined as a function of the
strain only; hence for a specific strain ‘e, reached in loading or
unloading, a unique stress is obtained from the curve in Fig. 3.3-2.

o A sufficient range (in terms of the strain) must be used in the
definition of the stress-strain relation so that the element strain
evaluated in the solution lies within that range; i.e., referring to Fig.

3.3-2, we must have ¢, < ‘e < ¢, forall z.

e The stress-strain curve does not necessarily have to pass through
the origin.

¢ A typical example of the nonlinear elastic model for rod
elements is shown in Fig. 3.3-3. This example corresponds to a
cable-like behavior in which the rod supports tensile but no
compressive loading.
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Stress A
Point 3
.................. N
Point 1 Point 2
AN AN

Strain

Figure 3.3-3: Nonlinear elastic material model corresponding to a
tension-only cable

e The rod element with this nonlinear elastic material model is
particularly useful in modeling gaps between structures. This
modeling feature is illustrated in Fig. 3.3-4. Note that to use this
element to simulate a contact gap, it is necessary to know which
node of one body will come into contact with which node of the
other body, and connect these two nodes with a rod element.

n
K X
| Gap A
Gap element v L
(between nodes m and n)
m /
Stress
A
A
L
K——>
Strain

Figure 3.3-4: Modeling of gaps
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3.4 Elasto-plastic material model

¢ FElasto-plastic materials are defined using the MATS1 material
entry with TYPE = ‘PLASTIC’. This section describes the
following material model:

Plastic: Elasto-plastic isotropic non-thermal dependent
material.

o All elasto-plasticity models use the flow theory to describe the
elastic-plastic response; the basic formulations for the von Mises
models are summarized on pp. 596-604, ref. KJB.
o These material models are based on

» The von Mises yield condition (see p. 597, ref. KIB)

» An associated flow rule using the von Mises yield function

» Isotropic, kinematic, or mixed hardening

» Bilinear or multilinear stress-strain curves (based on H and
TID fields in MATS1)

Figs. 3.4-1 to 3.4-3 summarize some important features of these
material models.

e These models can be used with the rod, 2-D solid, 3-D solid,
beam (plastic-bilinear only), and shell elements.

¢ All elastic and plastic material constants are thermally invariant.
However, thermal strains can be present when there is a
temperature load and a coefficient of thermal expansion.
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Stress‘
Multilinear stress-strain curve
T P
Bilinear stress-strain curve
|
Strain
Figure 3.4-1: von Mises model
c
4
(1,1,1) 53
~
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N3 O
20
\3 Oy
S1 $2

Elastic region

a) Principal stress space b) Deviatoric stress space

Figure 3.4-2: von Mises yield surface
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Figure 3.4-3: Isotropic and kinematic hardening

e These models can be used with small displacement/small
strain, large displacement/small strain and large
displacement/large strain kinematics.

When used with small displacement/small strain kinematics, a
materially-nonlinear-only formulation is employed.

When used with the large displacement/small strain kinematics,
either a TL or a UL formulation is employed (depending on
element type).

When used with large displacement/large strain kinematics, a
ULH formulation or a ULJ formulation can be employed. Large
displacement/large strain kinematics can only be used with the 2-D
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solid, 3-D solid and shell elements (only single layer shell
elements).

e For multilinear plasticity, there is no restriction on the number
of stress-strain points in the stress-strain curve.

e Mixed hardening is available only for bilinear plasticity.

¢ Plane strain, axisymmetric or 3-D solid elements that reference
these material models should preferably employ the mixed
displacement-pressure (u/p) element formulation. This is done by
setting UPFORM =1 in the NXSTRAT command.

¢ In the von Mises model with isotropic hardening, the following
yield surface equation is used:

where s is the deviatoric stress tensor and 00‘5 the updated yield

stress at time ¢.
In the von Mises model with kinematic hardening, the following
yield surface equation is used:

1 1
‘fo==('s="'a)-('s—'a)-="c>=0
where ‘@ is the shift of the center of the yield surface (back stress

tensor) and Oof is the virgin, or initial, yield stress.

In the von Mises model with mixed hardening, the following
yield surface equation is used:

where
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The back stress ‘@ is evolved by
da=C,(1-M)de’

C, 1s Prager’s hardening parameter, related to the plastic
modulus E, and M is the factor used in general mixed hardening
(0 <M < 1) which is currently restricted to 0.5.

The formulation for the von Mises model with mixed hardening
is given in the following reference:

ref  K.J. Bathe and F.J. Montans, “On Modeling Mixed
Hardening in Computational Plasticity”, Computers and
Structures, Vol. 82, No. 6, pp. 535-539, 2004.

The yield stress is a function of the effective plastic strain,
which defines the hardening of the material. The effective plastic

strain is defined as
2
‘ f—dep -de’
3

in which de” is the tensor of differential plastic strain increments
and in which de” -de” is calculated as de/ de] (see ref. KIB, p.

-P
599). In finite element analysis, ‘e is approximated as the sum of

all of the plastic strain increments up to the current solution time:

Q|
~
Il
o t—~

'e = Z Ae”

all solution steps

—p 2
where Ae = fEAe” -Ae” and Ae” is the tensor of plastic strain

increments in a solution step. Because of the summation over the

—P
solution steps, the calculated value of ‘e is referred to as the
accumulated effective plastic strain.
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e Ifathermal load is applied to the structure, the thermal strains
are taken into account but the material characteristics are
considered to be temperature independent.

e The material behavior beyond the last point of the stress-strain
curve in multilinear plasticity can be considered ruptured, or the
curve can be extended indefinitely with the slope of its final
segment. This depends on a global setting of the XTCURVE
parameter in NXSTRAT with indefinite extension as the default.

Modeling of rupture: Rupture conditions can also be modeled for
the multilinear stress-strain curve. The rupture plastic strain
corresponds to the effective plastic strain at the last point input for
the stress-strain curve. No rupture strain exists for the bilinear case.

When rupture is reached at a given element integration point,
the corresponding element is removed from the model (see Section
10.5).

3.5 Temperature-dependent elastic material models

e The thermal isotropic and thermal orthotropic material models
are discussed in this section.

The thermal isotropic material is obtained with the MAT1 and
MATT]1 material entries.

The thermal orthotropic material is obtained for surface
elements with the MAT2 and MATT2 material entries, or MATS
and MATTS8 material entries; for axisymmetric 2-D elements with
MAT?3 and MATT3 material entries; and for solid elements with
the MAT9 and MATT9 material entries, or MAT11 and MATT11
material entries.

These commands allow the different elastic material constants
to vary with temperature. Thermal strains are taken into account in
these materials.

e The thermal isotropic model is available for the rod, 2-D solid,
3-D solid and shell elements.

e The thermal orthotropic model is available for the 2-D solid,
3-D solid and shell elements.
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¢ Both models can be used with small displacement/small strain
and large displacement/small strain kinematics. The strains are
always assumed to be small.

When used with small displacement/small strain kinematics, a
materially-nonlinear-only formulation is employed.

When used with large displacement/small strain kinematics,
either the TL or UL formulation is employed. 2-D, 3-D solids and
shells use the TL formulations, and rods use a UL formulation.

¢ In the data input for the analysis, the nodal point temperatures
must be defined for all time steps. See Section 5.6.

e For these models, the elastic moduli, the shear moduli, the
Poisson's ratios and the coefficients of thermal expansion defined
in Section 3.2 are input as piecewise linear functions of the
temperature, as illustrated in Fig. 3.5-1. Linear interpolation is used
to calculate the material properties between input points.

Vi
Y
v k
0 | ' 6 65 6, 6 | 060 0 6
Temperature Temperature

0 ' 0, 03 0,
Temperature

\j

Figure 3.5-1: Variation of material properties for thermo-elastic
model
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e The calculation of thermal strains is described in Section 3.1.6.

¢ Note that if the material constants are all temperature
independent, and the material is isotropic, then thermal strains
could alternatively have been modeled using the elastic isotropic
material (non-thermal) of Section 3.2.

3.6 Thermal elasto-plastic and creep material models

ref. KJB
Section 6.6.3

e This section groups together thermal elasto-plastic materials and
creep materials, since a unified general solution can be applied to
these material types. The computational procedure is based on the
effective stress function algorithm, detailed in Section 3.6.4.

o The thermal elasto-plastic and creep models include the effects
of

» Isotropic elastic strains, via the MAT1 entry

» Thermal strains, ‘e’ via the MATTI or the MAT] entries.

rs 2

» Time-independent plastic strains, ‘e’ , via the MATSI entry

rs

» Time-dependent creep strains, terf, via the CREEP entry, or
the CREEP and MATTC entries.
e The constitutive relation used is
tci/, = ’C;rs( ‘e, —'el el — teZ;,H) (3.6-1)

where tGij is the stress tensor at time # and ' CZ

ijrs

is the elasticity

tensor at the temperature corresponding to time 7. The tensor ‘C..

ijrs
can be expressed in terms of Young's modulus ‘E and Poisson's
ratio ‘v both of which may be temperature-dependent.

¢ Note that the thermal, plastic and creep parts of these material
models are optional. If, however, the omitted strain components
result in one of the material models detailed in one of the previous

126

Advanced Nonlinear Solution — Theory and Modeling Guide



3.6: Thermo-elasto-plastic and creep material models

sections, then the program will select that material model.

e The formulations provided in this section are very general, and
can describe any material combining elastic, plastic, thermal and
creep strains. The combinations given in Table 3.6-1 are allowed.

e These material models can be used with the rod, 2-D solid, 3-D
solid, and shell elements.

e These models can be used with small displacement/small
strain, large displacement/small strain and large displacement/
large strain kinematics.

When used with small displacement/small strain kinematics, a
materially-nonlinear-only formulation is employed.

When used with large displacement/small strain kinematics,
either a TL or a UL formulation is employed (TL for 2-D and 3-D
solids and shells, and UL for rods).

When used with large displacement/large strain kinematics, the
ULH (updated Lagrangian Hencky) formulation is employed. This
is only supported for 2-D solid and 3-D solid elements.

e Plane strain, axisymmetric or 3-D solid elements that reference
these material models should preferably employ the mixed u/p
element formulation. This is done by setting UPFORM =1 in the
NXSTRAT entry.
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Description | Elastic | Plastic | Creep | Bulk data entries
Elastic Yes No Yes MATI1, CREEP
creep
Thermal Yes No Temp- | MAT1, CREEP, MATTC
elastic dep
creep
Thermal Yes Yes No MATI1, MATSI, with TID in MATS1 pointing to
elasto- a TABLESI entry
plastic Temp- | Yes No MATI1, MATTI1, MATSI, with TID in MATSI1
dep pointing to a TABLES] entry
Yes Temp- | No MATI1, MATSI, with TID in MATSI1 pointing to
dep a TABELST entry
Temp- | Temp- | No MATI1, MATT1, MATSI, with TID in MATSI1
dep dep pointing to a TABELST entry
Plastic- Yes Yes Yes MATI1, MATSI1, CREEP, with TID in MATS1
creep pointing to a TABLES1 entry
Temp- | Yes Yes MATI1, MATT1, MATSI1, CREEP, with TID in
dep MATSI pointing to a TABLES] entry
Thermal Yes Temp- | Yes MATI1, MATS1, CREEP, with TID in MATS1
plastic- dep pointing to a TABLEST entry
creep Temp- | Temp- | Yes MATI1, MATT1, MATS1, CREEP, with TID in
dep dep MATSI pointing to a TABLEST entry
Yes Yes Temp- | MATI1, MATS1, CREEP, MATTC, with TID in
dep MATSI pointing to a TABLES] entry
Temp- | Yes Temp- | MATI1, MATT1, MATSI1, CREEP, MATTC,
dep dep with TID in MATSI pointing to a TABLESI
entry
Yes Temp- | Temp- | MATI1, MATSI1, CREEP, MATTC, with TID in
dep dep MATSI pointing to a TABLEST entry
Temp- | Temp- | Temp- | MATI1, MATTI1, MATS1, CREEP, MATTC,
dep dep dep with TID in MATSI pointing to a TABLEST
entry

Notes:

1. "No" means that this strain is not included in the material. "Yes" means that this strain is
included in the material description, and that the material constants for this strain are
temperature-independent. "Temp-dep" means that this strain is included in the material
description, and that the material constants for this strain are temperature-dependent.

Table 3.6-1: Combinations of elastic, plastic and creep strains
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Note that the constitutive relations for the thermal, plastic and
creep strains are independent of each other; hence the only

interaction between the strains comes from the fact that all strains
affect the stresses according to Eq. 3.6-1. Fig. 3.6-1 summarizes the
constitutive description for a one-dimensional stress situation and a

bilinear stress-strain curve.

Area A

(a) Model problem of rod element under constant load

Temperature 0

Stress 4
t bt
I
tGyv ('0) E1('0) I
I
(E(t0) I
I
;- -
< — * >|, Strain
teP (time independent)
teE (time independent)
Creep A
strain

teC (time dependent)

(b) Strains considered in the model

Time

Figure 3.6-1: Thermo-elasto-plasticity and creep constitutive
description in one-dimensional analysis
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Since there is no direct coupling in the evaluation of the
different strain components, we can discuss the calculation of each
strain component independently.

¢ In multilinear plasticity, the rupture plastic strain corresponds to
the effective plastic strain at the last point input for the stress-strain
curve.

e  When rupture is reached at a given element integration point,
the corresponding element is removed from the model (see Section
10.5).

ref.  M.D. Snyder and K.J. Bathe, "A Solution Procedure for
Thermo-Elastic-Plastic and Creep Problems," J. Nuclear
Eng. and Design, Vol. 64, pp. 49-80, 1981.

ref. M. Koji¢ and K.J. Bathe, "The Effective-Stress-Function
Algorithm for Thermo-Elasto-Plasticity and Creep," Int.
J. Numer. Meth. Engng., Vol. 24, No. 8, pp. 1509-1532,
1987.

3.6.1 Evaluation of thermal strains
e The thermal strains are calculated as described in Section 3.1.6.
3.6.2 Evaluation of plastic strains

¢ Plasticity effects are included in the thermal elasto-plastic
material model and is based on the von Mises yield criterion, an
associated flow rule, isotropic or kinematic hardening (no mixed
hardening), and bilinear or multilinear stress-strain curves (based
on the H and TID fields in MATS1).

e In the case of bilinear plasticity only the elastic material
parameters can be temperature dependent (Young’s modulus,
Poisson’s ratio and coefficient of thermal expansion).

¢ The multilinear plasticity case is more general. In this case, the
stress-strain curves can be made temperature dependent by setting
TID in MATSI to point to a TABLEST entry instead of a
TABLESI entry. The elastic material parameters can also be
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temperature dependent. The yield curves are interpolated as shown

in Fig. 3.6-2.
Stress A 3 4
2 ? :
%
0i -
I o2 o3 o ¥
e ef & ¢ Strain
O L
1 2 3 4
Cit1 Civ1 Civr Cinl
Temperature
a) Stress-strain curves input data
Stress 3 40,
Interpolated

yield curve

q
/
/
/ >
/ .
, + Plastic
1 o ei{rl strain
P2 P3
Cit1 Citl
Temperature
b) Yield curves

Figure 3.6-2: Interpolation of multilinear yield curves with temperature
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e The plastic strains are calculated using the von Mises plasticity
model (see Section 3.4) with temperature-dependent material
parameters (Young's modulus, Poisson's ratio, stress-strain curves).

e The yield function is in isotropic hardening

where s is the deviatoric stress tensor, ’o*yV is the virgin yield
stress corresponding to temperature ‘9 and ‘@ is the shift of the
stress tensor due to kinematic hardening.

e The expressions for plastic strain increments resulting from the

flow theory are de; =dA tsl.j for isotropic hardening and

de; =d /1( s, —’a[j) for kinematic hardening, in which dA is the

plastic multiplier (positive scalar) which can be determined from
the yield condition f, = 0. In the case of kinematic hardening, we
express the change of the yield surface position in the form

da; :’Cde,f

where 'C is the modulus

o 2 'E'E
3'E-'E,
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e Care should be exercised in the use of this model in kinematic
hardening conditions. Namely, nonphysical effects can result when
the variation in Er as a function of temperature is large. Hence, it is
recommended to use this model only when the variation in £ as a
function of temperature is small.

3.6.3 Evaluation of creep strains

e Two creep laws are currently available in Solution 601. The first
called the Power creep law is obtained by setting TYPE = 300 in
the CREEP material entry. The second creep law called the
Exponential creep law is obtained by setting TYPE = 222 in the
CREEP material entry. The Power creep law is currently supported
for the elastic-creep, thermal elastic-creep, plastic-creep and
thermal plastic-creep material models. The Exponential creep law
is currently supported only for the elastic-creep and plastic-creep
material models.

e The effective creep strain is calculated as follows:
Power creep law (creep law 1) :
i5C _ g gt
in which o is the effective stress, ¢ is the time, and a, b, d are
material constants from the CREEP material entry. These three
constants can be set to be temperature dependent via the
MATTC entry.
Exponential creep law (creep law 2) :
t—=C __ —R(c)-t
e —F(G)- I-e +G(G)-t

with

Alo)=a(¢""): Rlo)=c(o)'s Glo)=ee’")

in which a through fare material constants from the CREEP
material entry.
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e The creep strains are evaluated using the strain hardening
procedure for load and temperature variations, and the O.R.N.L.
rules for cyclic loading conditions.

ref.  C.E. Pugh, J.M. Corum, K.C. Liu and W.L. Greenstreet,
"Currently Recommended Constitutive Equations for
Inelastic Design of FFTF Components," Report No. TM-
3602, Oak Ridge National Laboratory, Oak Ridge,
Tennessee, 1972.

The procedure used to evaluate the incremental creep strains is
summarized in the following: Given the total creep strains teif and

S t At
the deviatoric stresses ' S

1) Calculate the effective stress

1
t+At5 — i HAtS.. HAtS.. 2
2 y y

2) Calculate the pseudo-effective creep strain

1

2
t—C __ g t=C orig)(t—C_ arig)
€ _[3( € ¢ € —¢

3a) For power creep with temperature-independent material
constants, calculate the effective creep strain and effective creep
strain rate at time ¢+ Af using

(t+Ath )1/”2 _ ( th )1/“2 n (a() 1+Al a )1/02 At

t+At—=C t =C
t+At=C e — e
e =

At

3b) For other creep laws (including power creep with
temperature dependent constants), calculate the pseudo-time 7
satisfying
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EC (t+At5,t+At0’ t_) _t EC _I_e;C (H—AIE,HAtH’ t_) At

where e¢ (”A’E,”A’G, t_) is the generalized uniaxial creep law
déc (I+At5 t+At9 Z_)
2 b
dt
the effective creep strain and effective creep strain rate at time
t + At using

. Then calculate

=C At — A -
and e (” ‘G0, t):

t+At—=C —=C [ t+At = t+At e t+At=C =C [ t+At = t+At e
e =e ( o, H,t), e =e ( o, H,t).

4) Calculate 'y using

t+At =C
t+At, 3 €

_E t+At5

5) Calculate the incremental creep strains using

—C _ t+At | t+At
Ae; =At "y s,

The use of the pseudo-time in step 3b corresponds to a strain

hardening procedure. See ref. KIB, pp 607-608 for a discussion of
strain hardening for calculation of creep strains.

3.6.4 Computational procedures

ref. KJB8  ® The stresses and strains at the integration points are evaluated
Section 6.6.3  using the effective-stress-function algorithm.

ref. M. Koji¢ and K.J. Bathe, "The Effective-Stress-Function
Algorithm for Thermo-Elasto-Plasticity and Creep," Int.
J. Numer. Meth. Engng., Vol. 24, No. 8, pp. 1509-1532,
1987.

Briefly, the procedure used consists of the following calculations.
The general constitutive equation
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t+Ato_(i) :t+AtcE (I+At e(z’) _t+AteP(i) _t+AteC(1') _t+AteTH) (3.6—1)

is solved separately for the mean stress and for the deviatoric
stresses. In this equation the index (7) denotes the iteration counter
in the iteration for nodal point equilibrium. For easier writing this
index will be dropped in the discussion to follow. The mean stress
is calculated as

(3.6-2)

t+AtE
t+AtO_ _ (t+At _t+AteTH)
m t+At m
1-27%y

t+

The deviatoric stresses “**'s depend on the inelastic strains and

they can be expressed as

n 1 +AL m T
g = Iy T;/+A/1[t Ye'—(1-a)AtTy ’s] (3.6-3)

t+At
t+At _ E

where " a, =———— s = deviatoric stress at the start of the
1 + t+AtV

time step and « is the integration parameter used for stress
evaluation (O fa< l) . The creep and plastic multipliers “y and

A are functions of the effective stress '@ only, and they

account for creep and plasticity; also

r_t, Pt C

t+At n t+At
= e —¢

¢ (¢

. . . . . A . . P
is known since the deviatoric strains "*'e’, plastic strains ‘e’ and

creep strains ‘e are known from the current displacements and
the stress/strain state at the start of the current time step.

The following scalar function f ( e 5) is obtained from Eq.
(3.6-3)

f(t+At5)=a2 t+Al‘52+bT}/_CZ Tyz_dz =0 (36‘4)
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The zero of Eq. (3.6-4) provides the solution for the effective stress

A —
M5 . where

a="Ya,+a At y+AA
b=3(1-a)At ”Atel; 's;
c=(l1-a)At's

d2 _ét+At " ot+At _nm

2 y g

with summation on the indices i, j.
Once the solution for has been determined from Eq. (3.6-4),

simultaneously with the scalars “y and AA from the creep and

plasticity conditions, the deviatoric stress ‘s is calculated from

Eq. (3.6-3), and the plastic and creep strains at the end of the time
step are obtained as

t+AteP — teP +A/1 t+Ats

141G C =teC+|:(1_a)ts+at+AtS:|At r}/

The above equations correspond to isotropic hardening
conditions and a general 3-D analysis. The solution details for
kinematic hardening conditions and for special problems (for the
plane stress and shell elements) are given in the above cited
references, and also in the following reference:

ref. M. Koji¢ and K.J. Bathe, "Thermo-Elastic-Plastic and
Creep Analysis of Shell Structures", Computers &
Structures, Vol. 26, No 1/2, pp. 135-143, 1987.
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3.7 Hyperelastic material models

¢ The hyperelastic material models available in Advanced
Nonlinear Solution are the Mooney-Rivlin, Ogden, Arruda-Boyce,
Hyperfoam, and Sussman-Bathe material models. They are all
defined using the MATHE command. In addition MATHP can be
used to define a hyperelastic Mooney-Rivlin material.

e This material model can be employed with the 2-D solid and 3-
D solid elements.

e This material model uses large displacement/large strain
kinematics. A Total Lagrangian (TL) formulation is employed. The
same formulation is used if a large displacement/small strain
kinematics is selected.

e Viscoelastic effects and Mullins effects can be included using
the MATHEV and MATHEM entries.

e Thermal strains can be included via a constant thermal
expansion coefficient. Section 3.7.6 shows how they are computed
for hyperelastic materials.

¢ In Solution 701 only the Mooney-Rivlin and Ogden material
models can be used, and only for 3-D solid elements.

o The isotropic hyperelastic effects are mathematically described
by specifying the dependence of the strain energy density (per unit

original volume) W on the Green-Lagrange strain tensor &, .

e We now give a brief summary of the quantities and concepts
used. For more information, refer to ref KJB, section 6.6.2. Here
and below, we omit the usual left superscripts and subscripts for
ease of writing. Unless otherwise stated, all quantities are evaluated
at time ¢ and referred to reference time 0 .

o Useful quantities are the Cauchy-Green deformation tensor C,,

given by
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Cl.j = 251.1. “‘51-,-

where 51.]. is the Kronecker delta; the principal invariants of the

Cauchy-Green deformation tensor,

1,=C,, lzzé(llz—cgc,j), I, =detC

the reduced invariants:
1_1 =113, I, =11,

the stretches A, where the A, ’s are the square roots of the principal

stretches of the Cauchy-Green deformation tensor; and the reduced
stretches:

1

/Ti = li (11/1223 )_5
Note that

J =4

is the volume ratio (ratio of the deformed volume to the
undeformed volume).

o The strain energy density W is written in terms of the
invariants or stretches. In many cases, the strain energy density is
conveniently written as the sum of the deviatoric strain energy

density ¥, and the volumetric strain energy density W, .

e With knowledge of how the strain energy density W depends
on the Green-Lagrange strain tensor (through the invariants or
stretches), the 2™ Piola-Kirchhoff stress tensor is evaluated using
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ref. KJB

1{ow ow
S == L
72|\ ce, Oe,

and the incremental material tensor is evaluated using

1(as, as,
= LT
"2\ ce, oOe

sr

3.7.1 Mooney-Rivlin material model

e The Mooney-Rivlin material model is obtained by setting
Model=Mooney in the MATHE material entry. It can also be
obtained using the MATHP material entry. It is based on the
following expression of the strain energy density:

W, =Cyo(1,-3)+Cy (1, =3)+Cyy (1, =3) +C,, (1, -3)(1, -3) +
Cor (1, =3) +Cyy (1, =3)’ + Cy, (1, -3)" (1, =3) +

Cpp (1,=3)(1,=3) +Cyy (1, -3)°
(3.7-1)

where Cjj are material constants , and /; and /, are the first and
second strain invariants at time #, referring to the original
configuration (see ref. KJB, Section 6.6.2 for the definitions of the
strain invariants).

Note that constants 4;; used in the MATHP material entry are
identical to Cj; constants used in MATHE and in the equation
above.

e This strain energy density expression assumes a totally

Section 6.6.2 incompressible material ([ ;= l). It is modified as explained

below for plane strain, axisymmetric or 3-D analysis.

Plane stress analysis In plane stress analysis, the material is
assumed to be totally incompressible. Therefore W), is zero and

W =W, . A displacement-based finite element formulation is used,
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in which the incompressibility condition of the material is imposed
by calculating the appropriate thickness of the material.

Plane strain, axisymmetric and 3-D analysis: In plane strain,
ref. KIB axisymmetric and 3-D analysis, the material is modeled as
Section 6.6.2 compressible (that is, the bulk modulus is not infinite), but the bulk
modulus can be set high so that the material is “almost
incompressible”.
The Mooney-Rivlin strain energy density equation is modified
by:

1) substituting for the invariants [, /, the reduced invariants
I.1,,

2) removing the condition /; =1, and

3) adding the volumetric strain energy density

1
w, =5K(J—1)2

where « is the bulk modulus given by K in the MATHE material
entry (or two times D; in the MATHP material entry). This
expression for the volumetric strain energy density yields the
following relationship between the pressure and the volume ratio:

p=-x(J-1)

The mixed u/p formulation pressure formulation (u/p) is always
used for these elements, to avoid volumetric locking. The material
stress-strain descriptions are obtained by differentiation of W to
obtain stresses due to the element displacements and then taking
into account the effect of the separately interpolated pressure.

ref.  T. Sussman and K.J. Bathe, "A Finite Element
Formulation for Nonlinear Incompressible Elastic and

Inelastic Analysis," J. Computers and Structures, Vol.
26, No. 1/2, pp. 357-409, 1987.
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Selection of material constants: The Mooney-Rivlin material
description used here has 9 C;; constants and the bulk modulus «.
Strictly speaking, this material law is termed a higher-order or
generalized Mooney-Rivlin material law. Choosing only C;y # 0
yields the neo-Hookean material law, and choosing only C;, # 0,
Cy; # 0 yields the standard two-term Mooney-Rivlin material law.

The small strain shear modulus and small strain Young’s
modulus can be written in terms of these constants as (assuming
K=0)

G=2(C,+Cy) (3.7-5)
E=6(C,+Cy) (3.7-6)

These moduli must be greater than zero.

e The bulk modulus « is used to model the compressibility of the
material for plane strain, axisymmetric and 3-D analysis.

e Solution 601 assumes a default for the bulk modulus based on
small strain near-incompressibility, i.e.,

K= _E with v =0.499 (3.7-7)
3(1—2v)

where E is the small strain Young's modulus or, in terms of the
small strain shear modulus G,

2G(1+v)
Kk=———--2=500G for v=0.499

3(1—21/)

This rule of thumb can be used to estimate the bulk modulus in the
absence of experimental data. However, lower values of the bulk
modulus can be used to model compressible materials.

e Solution 701 assumes the same bulk modulus based on small
strain near-incompressibility. However, this can significantly
reduce the stable time step. In such cases, is better to use a bulk
modulus that results in v=0.49.
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e When automatic time step calculation is used for a Mooney-
Rivlin material in Solution 701, the critical time step is governed
by the dilatational wave speed. This is most frequently an
acceptable assumption since the material is almost incompressible.

e As the material deforms, the bulk to shear modulus ratio may
change, because the instantaneous shear modulus is dependent on
the amount of deformation. A value of the bulk modulus that
corresponds to near incompressibility for small strains may not be
large enough to correspond to near incompressibility for large
strains.

3.7.2 Ogden material model

ref. KIB
Section 6.6.2

e The Ogden material model is obtained by setting Model=Ogden
in the MATHE material entry. It is based on the following
expression:

5 e |

where u, and «, are Ogden material constants.

e This strain energy density expression assumes a totally
incompressible material ( I, = 1) . As in the Mooney-Rivlin

material, the strain energy density expression of the Ogden material
is used unmodified for plane stress analysis, and is modified for
plane strain, axisymmetric and 3-D analysis. The modification is
made by:

1) substituting for the stretches 4,,4,, 4, the reduced stretches
YRR

2) removing the condition 4,4,4; =1, and

3) adding the volumetric strain energy density

W, :%K(Mzzj -1y’ Z%K(J—l)z
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where « is the bulk modulus. The relationship between the pressure
and the volumetric ratio is the same as for the Mooney-Rivlin
material.

The u/p formulation is always used for plane strain,
axisymmetric and 3-D elements. For comments about the u/p
formulation, see the corresponding comments in the Mooney-
Rivlin material description.

Selection of material constants: The Ogden material description
used here has 19 constants:  ,,, n=1,...,9 and the bulk

modulus. Choosing only y ,a, #0, n=1,2,3 the standard three-

term Ogden material description is recovered.
The small strain shear modulus and small strain Young’s
modulus can be written as (assuming K =0 )

1 9
GZEZ#,,%

n=1

3 9
EZEZ/J”%

n=1
These moduli must be greater than zero.

e When automatic time step calculation is used for an Ogden
material in Solution 701, the critical time step is governed by the
dilatational wave speed. This is most frequently an acceptable
assumption since the material is almost incompressible.

¢ For comments about the bulk modulus, see the corresponding
comments about the bulk modulus in the Mooney-Rivlin material
description.

3.7.3 Arruda-Boyce material model

e The Arruda-Boyce model is obtained by setting MODEL =
ABOYCE in the MATHE material entry. It is based on the
following expression:
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ref. KJB
Section 6.6.2

W, = NKT[%(II —3)+ﬁ(112 —9)+ﬁ(1§ -27)
19 ., 519
" 7000N° (1 -81)+ 673750N" (17 -243)]

where Ngris a material constant and N is a material parameter
representing the number of statistical links of the material chain.

e The Arruda-Boyce material model is described in the following
reference:

ref.  E. M. Arruda and M. C. Boyce, “A three-dimensional
constitutive model for the large stretch behavior of
rubber elastic materials”, J. Mech. Phys. Solids, Vol,. 41
(2), pp 389-412 (1993).

o This strain energy density expression assumes a totally
incompressible material (13 = 1). As in the Mooney-Rivlin

material, the strain energy density expression of the Arruda-Boyce
material is used unmodified for plane stress analysis, and is
modified for plane strain, axisymmetric and 3-D analysis. The
modification is made by:

1) substituting for the strain invariant /; the reduced strain
invariant I_l,
2) removing the condition /; =1, and
3) adding the volumetric energy term

2
1)

w, =2
) 2

—InJ

where « is the small-strain bulk modulus. The relationship between
the pressure and the volume ratio is

K 1
== J ——
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The u/p formulation is always used for plane strain, axisymmetric
and 3-D elements. For comments about the u/p formulation, see the
corresponding comments in the Mooney-Rivlin material
description.

e  When plane strain, axisymmetric or 3-D elements are used,
there should be at least one solution unknown. This is because the
constraint equation used in the u/p formulation is nonlinear in the
unknown pressures. Therefore equilibrium iterations are required
for convergence, even when all of the displacements in the model
are prescribed.

3.7.4 Hyperfoam material model
¢ The Hyperfoam material model is obtained by setting

Model=Foam in the MATHE material entry. It is based on the
following expression:

W= ﬁ“ﬂ A A8 4+ A =3 +i(f%ﬂ” ~1)
B

n=l Yy, n

in which there are the material constants x,,¢,,, n=1,.,N .

The maximum value of N is 9.

e A material model similar to the hyper-foam material model is
described in the following reference:

ref.  B. Storédkers, “On material representation and

constitutive branching in finite compressible elasticity”,
J. Mech. Phys. Solids, Vol,. 34(2), pp 125-145 (1986).

In this reference, [, is the same for all values of n.

o The strain energy density can be split into deviatoric and
volumetric parts

N
Wy = Z,z—[ﬂf A A =300
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N
w, =Y
n=1

Z 35" —1)+ﬂi(J3“r'ﬁr' -1)

n

Notice that W =W, + W, . This decomposition of the strain energy

density has the advantage that the stresses obtained from the
deviatoric and volumetric parts separately are zero when there are
no deformations:

D — l % + % =0
ile;=0 9 884.], agji -0 ’
U ) 88,7 o i . o

Notice that ¥}, contains the volumetric part of the motion through

the term 3J¢""> . Therefore W,, is not entirely deviatoric.

e The material is not assumed to be totally incompressible.
Because both W, and W, contain the volumetric part of the

motion, the mixed u/p formulation cannot be used with the hyper-
foam material. A displacement-based formulation is used.

Selection of material constants: The hyper-foam material
description used here has 27 constants: x,,c,,f,, n=1,...,9.

The small strain shear modulus and small strain bulk modulus
can be written as

1 9
GZEZ#,,%

n=1

K= Zg‘,(ﬁ +§] Hm,a,

n=1
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These moduli must be greater than zero, hence we note that 3,

should be greater than —1/3.
When all of the /3, are equal to each other = £, then the

Poisson’s ratio is related to S using

v

=15

e The hyper-foam material model is generally used for highly
compressible elastomers.

If the ratio of the bulk modulus to shear modulus is high
(greater than about 10), the material is almost incompressible and
we recommend that one of the other hyperelastic materials be used.

3.7.5 Sussman-Bathe material model

e The Sussman-Bathe model is obtained by setting MODEL =
SUSSBAT in the MATHE material entry. It is based on the
following equation:

W, =w(e)+w(e,)+w(e) (3.7-8)

where w(e) is a function of the principal logarithmic strain (Hencky
strain) and ey, e,, and e; are the principal logarithmic strains.

e The primary goal of the model is to fit given uniaxial
tension/compression data very well. This goal is accomplished by
using a spline to fit the derivative of w(e), as described in detail
below.

Of course, when uniaxial tension/compression data is known, a
curve fitting approach can, in theory, be used to determine the
constants for the other hyperelastic models, e.g. the Ogden material
model. But this curve fitting in practice does not provide good fits
to the data under many circumstances.

o This strain energy density expression assumes a totally
incompressible material (/3 = 1) and is modified as explained below
for plane strain, axisymmetric or 3-D analysis.
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e The Sussman-Bathe model is given in the following reference

ref.  T. Sussman and K.J. Bathe, “A model of incompressible
isotropic hyperelastic material behavior using spline
interpolations of tension-compression test data”,
Commun. Numer. Meth. Engng, Vol. 25, Issue 1, pp. 53-
63, January 2009.

e The following gives a quick summary of the Sussman-Bathe
model. In this summary, we assume that the material is totally
incompressible. Differences due to slight compressibility are small.

Theoretical background:

1) The Cauchy stress 7 ; corresponding to the principal strain €; is

T, = aaWD +p=w(e)+p (3.7-9)
e.

1

where W'(e,)=dw/de.

2) In uniaxial tension/compression (Figure 3.7-1), ¢, =e,

e,=¢,=—1eso
r=w(e)—w(—1e) (3.7-10)
(3.7-10) can be inverted to obtain
w'(e) = ZT((%)]{ e) +r(—%(%)k e) (3.7-11)
&=0

The series converges when 7(e) > 0as e > 0.
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Original
,,,,,,,,,,,,,,,,,,,,,,,,,, : Deformed
F)
-_>
o, 'L
A=LL ="4—
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1Tl T AT
L
L 1 F
e:e]:lno—l 6 =6="7¢ lej T,=7;=0
|

1

Figure 3.7-1: Uniaxial tension/compression test

3) The asymptotic conditions for w are w'(e) — —© as e — —0;
w'(e) — o0 as e — 0. These asymptotic conditions correspond to
the asymptotic conditions of infinite stresses for infinite strains.

4) For a stable material, it is necessary (but not sufficient) that
w"(e) > 0 for all e. Not all materials for which 7'(e) > 0 have

w"(e) > 0. For example, the material with

7(e)=E,e, e>0
=FE.e, e<0

where Er and E¢ are constants greater than zero, has w"(e) >0
only if

sE, <E.<2E,
5) Given only simple tension data for 7(e), there are multiple

w'(e) that exactly correspond to 7(e), for positive e only. Two

such w'(e) are
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w(e)=0,e<0
=7(e),e>0

and

w'(e)=—1(-2e),e<0
=0,e>0
Hence the material is not uniquely described given only uniaxial
tension (or uniaxial compression) data. Both uniaxial tension and

uniaxial compression data must be provided to uniquely describe
the material.

6) The small-strain Young’s modulus £ is found by differentiating
the uniaxial stress-strain curve, and evaluating at ¢ = 0, and, since
the material is almost incompressible, the small-strain shear

modulus Gis G = %E . The results are

E= %W"(o) ,G= %W"(o) (3.7-12a, b)

8) The Ogden material model can be considered a special case of
(3.7-8), since the Ogden material model can be written in terms of
w(e):

w(e) = Zyn (exp(a,e)—1) (3.7-13)

Spline representation of w'(e):

In the Sussman-Bathe model, we choose w'(¢e) to fit given uniaxial
tension/compression data very well, as follows.

The uniaxial tension-compression data is in the form of user-
specified data points (el. ,T; ) . From these data points, we build a

non-uniform cubic spline representation of the uniaxial
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tension/compression stress-strain data 7 = 7(e), as shown in
Figure 3.7-2. For the non-uniform cubic spline representation of

z(e),

1) A spline segment is placed between two successive user-input
data points. The user-input data points need not be equally spaced.

2) The range of the cubic spline is between the first and last user-
input data points.

3) Outside the range of the cubic spline, the slope of 7(e)is greater

than zero. This ensures that the asymptotic conditions of
7(—00) = —00, 7(0) =00 are met.

w(e)

Segment of Slope > 0
cubic spline

L

€min,t
‘

€max,t

Measured data point
Slope >0

Figure 3.7-2: Uniaxial tension/compression stress-strain spline

Using the non-uniform cubic spline representation of 7(e) and
(3.7-11), we build a uniform cubic spline for w'(e) as shown in

Figure 3.7-3. For the uniform cubic spline representation of w'(e),

1) The same number of spline segments is used in tension and in
compression.

2) The range of the cubic spline is the same in tension and in
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compression. This range includes the range of the user-input data
points.

3) Outside the range of the cubic spline, the slope of w'(e) is
greater than zero, whenever possible.

w’(e)

Segment of  Slope >0
cubic spline

Cmin,w”’

[
Cmax,w’

Slope > 0

Figure 3.7-3: w'(e) spline

In order to measure the accuracy of the spline representation of
w/(e) , we define the relative interpolation error

(3.7-14)

in which 7 (e) is the stress evaluated from the spline representation
of w(e) (using 3.7-10), and 7(e) is the stress evaluated from the
spline representation of 7(e).

The number of spline segments is automatically chosen to make
the interpolation error » smaller than a user-specified value.
Typically only a few spline segments need be used for w'(e) in
order to reduce the interpolation error to a value smaller than
experimental error.
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w(e)=C, + (e,

Each cubic spline segment in w'(e) can be written
w(e)=A4,z+B,2 +A4(0-z2)+B(-z)’ (3.7-15)

for the segment e, <e<e,, where z=(e—¢)/(e,, —¢;). With

this definition, w(e) can be written
2 4 2 4
—ei)[AM%+B. z +A.1 1-2) +B.1 k) j

i+1 T 1 2 i 4
(3.7-16)

+1

i+1

The program determines the constants 4,, B;, C; from uniaxial
stress-strain data, as described above. The constants A4, B, C;are
listed in the output file when the model definition is listed.

Plane stress analysis: The material is assumed to be totally
incompressible. Therefore W) is zero and W= Wp. A
displacement-based finite element formulation is used, exactly as
for the Mooney-Rivlin material model described above.

Plane strain, axisymmetric and 3-D analysis: The material is
modeled as compressible (that is, the bulk modulus is not infinite),
but the bulk modulus can be set high so that the material is “almost
incompressible”.

Equation (3.7-8) is modified by 1) substituting the deviatoric
principal strains for the corresponding principal strains, 2)
removing the condition e; + e; + e; = 0, and 3) adding the
volumetric strain energy density

W, =k(JInJ —(J-1)) (3.7-17)

where « is the bulk modulus. The relationship between the pressure
and the volume ratio is

p=-xkInJ=—k(e+e,+e) (3.7-18)

which is a generalization of the small-strain pressure-strain
relationship. The u/p formulation is always used. For comments
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about the u/p formulation, see the corresponding comments in the
Mooney-Rivlin material description.

Data input considerations:

1) Data input is in the form of a set of stress-strain data points, with
positive stresses/strains corresponding to uniaxial tension and
negative stresses/strains corresponding to uniaxial compression.
Compression and tension data are entered together in the same data
set.

2) The data set should contain both tension and compression data
(compression data is possibly converted from equibiaxial tension
data, see below). If the data set contains only tension data, the
program will assume that the true stress / true strain curve in
compression is a straight line, which is most likely not a good
assumption.

3) The stresses and strains in the set of stress-strain data points can
be either

a) True stresses and logarithmic strains (SSTYPE=True in
MATHE)

b) Engineering stresses and engineering strains (SSTYPE=Eng in
MATHE)

¢) Engineering stresses and stretches (SSTYPE=Stretch in
MATHE)

4) Data points from equibiaxial tension experiments can be
converted into equivalent uniaxial compression data. The
conversion formulas are:

e, ==2e,, & =272, ye, =(1+,¢,) " ~1 (3.7-19)

_ _ 3
T, =Ty, 4O, =— 04,

where e, is the is the equivalent uniaxial logarithmic strain (< 0), e,
is the equibiaxial logarithmic strain (> 0), 4, is the equivalent
uniaxial stretch, 4, is the equibiaxial stretch, (¢, is the equivalent
uniaxial engineering strain, ¢ e, is the equibiaxial engineering
strain, 7, is the equivalent uniaxial true (Cauchy) stress, 7, is the
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equibiaxial true (Cauchy) stress, (0 , is the equivalent uniaxial
engineering stress, (0, is the equibiaxial engineering stress. All of
these conversion formulas assume that the material is
incompressible.

5) The Sussman-Bathe model fits the data so closely that roughness
and waviness in the data causes roughness and waviness in the
w/(e) splines. The program does not smooth the data in order to

eliminate roughness and waviness. If the original data set contains
roughness and waviness that should not be present in the analysis,
the data set should be smoothed before entering the data into the
program.

6) If the data set corresponds to a stable material, then the
Sussman-Bathe model is stable, otherwise the Sussman-Bathe
model may not be stable.

7) The strain range of the data set should contain the range of
strains anticipated during the analysis.

8) Do not confuse uniaxial compression with hydrostatic
compression. These two test cases are very different.

3.7.6 Thermal strain effect

e When the material is temperature-dependent, a coefficient of
thermal expansion can be included. The coefficient of thermal
expansion is constant. The thermal strain is calculated as

e, =a(0-6,)

where °@ is the initial temperature, and it is assumed to be
isotropic. This is similar to the formula as is used for the other
thermo-elastic materials, see Section 3.1.6 assuming a constant
thermal expansion coefficient.

e  When the thermal strain is non-zero, the deformation gradient
X is assumed to be decomposed into a thermal deformation
gradient X, and a mechanical deformation gradient X, , using
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The thermal deformation gradient is
X, =+e,)l
therefore the mechanical deformation gradient is

X,=(+e,)"'X

the mechanical Cauchy-Green deformation tensor is
C,=(1+e, )*C

and the mechanical Green-Lagrange strain tensor is
_ ) 1 -2
e =(l+e,) 3—5(1—(1+et,,) )1

For small thermal strains, the last equation reduces to
g, ~€—e,l, so that the strains are nearly the sum of the

mechanical and thermal strains, as in small strain analysis.
However, we do not assume that the thermal strains are small.

e The strain energy densities are computed using the mechanical
deformations. This is done by computing all invariants and
stretches using the mechanical deformations, e.g. the mechanical
Cauchy-Green deformation tensor.

The 2™ Piola-Kirchhoff stresses are obtained by differentiating
the strain energy density with respect to the total strains. Since the
strain energy density is a function of the mechanical strains, we
obtain
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1| ow ow
S, == +
) (ﬁ(g)ij 8(s)ﬁJ

_1fow 8(5,,1)ab+ ow  0(e€,).
2 a(gm)ab a(‘g)ij a(gm)ba a(g)ji

=((1+e )z)l ow N ow
T2\ ae,), A,

With this definition, the 2™ Piola-Kirchhoff stresses are conjugate
to the Green-Lagrange strains.

3.7.7 Viscoelastic effects (Solution 601 only)

e Viscoelastic effects can be included in the Mooney-Rivlin,
Ogden, Arruda-Boyce, hyper-foam and Sussman-Bathe material
models.

The viscoelastic model used is due to Holzapfel, see the
following references:

ref.  G. A. Holzapfel, “On large strain viscoelasticity:
continuum formulation and finite element applications to
elastomeric structures”, Int. J. Num. Meth. Engng., Vol.
39, pp 3903-3926, 1996.

ref.  G. A. Holzapfel, Nonlinear solid mechanics. A
continuum approach for engineering. John Wiley &
Sons, Chichester, pp 278-295, 2000.

ref.  G. A. Holzapfel, “Biomechanics of soft tissue”, in
Lemaitre (ed.), Handbook of Materials Behavior
Models: Nonlinear Models and Properties, Academic
Press, 2001, pp 1057-1071.

In the following, we give a brief discussion of the Holzapfel
model for finite strain viscoelasticity.
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Equivalent 1D model: The equivalent 1D model is shown in Fig
3.7-4. It is the same as a generalized Maxwell model with many
chains. A generic chain is denoted with superscript « , as shown in
the figure.

Strain e,
stress ¢

«— <4>‘

Strain  Strain
o

g r*

Figure 3.7-4: Equivalent 1D model for
viscoelastic effects

The spring E” is equivalent to the elastic stiffness of the
model. Each chain contains a spring with stiffness £ and dashpot
with viscosity 17 . (Note that the superscripts o and & do not
denote exponentiation.) The strain in each chain is the sum of the
strain in the spring g“ and the strain in the dashpot I'“. The
observed stress is

c=0"+) q" (3.7-20)
where ¢* = E”e is the elastic stress and ¢* = E“g* =n“T“ is

a

the stress in chain « . Using the definition 7% = U—a and the

assumption E“ = f“E”, the following expression is obtained:

1
q° +T—aq“ = B%6" (3.7-21)
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Assuming that Oqa =0, (3.7-21) can be written in convolution
form as

t [
t—t " g
qa :Iexp(——a]ﬂa tO' dl (37-22)
T
0

from which the total stress is

J=IE°° {1+Zﬂ“ exp(—t_at'ﬂ ‘edt (3.7-23)
o T

a

Evidently the relaxation modulus is
o a t o .
E@)=F [1 + Zﬂ exp(——aﬂ which is a Prony series
p T
expression.

The dissipation in dashpot « is

. . .1 g
D =qT" =q"(é—¢")=q"| e— -— 3.7-24
¢TI =q"(e-¢")=¢ ( & EJ (3.7-24)

and the total dissipation is D = ZD“ . In the above, the

viscoelastic material constants for each chain are 7%and 5“.

Potential-based 1D model: The 1D model can be written in terms
of a potential as follows:

Y =¥"(e)+ Y Y (g") (3.7-25)

1
where W”(e) = EE “e’ is the strain energy of the elastic chain

1 2
and Y (g“)= EE”’ (ga) is the strain energy in the spring of
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chain & . In terms of %, ¥“ (ga): pryY” (ga) . The 1D model

is recovered by defining

o
Oe

LY

O

(3.7-26a,b)

B

49 =~ 7
T'“ fixed ar

e fixed
Notice that (3.7-20) and (3.7-26a) imply

.  O¥°
Oe

ovV”
= —.
I fixed g

q

Finite strain model: The finite strain model is derived from the
potential-based 1D model as follows. The elastic potential is
defined as

¥ (g)=W(¢) (3.7-27)

where W (Sl.j) is the strain energy density from the elastic part of

the material model. The potential of each chain « is defined as

w (5,; N ) = p°W (G;‘ ), usage=combined
= BW, (G;‘), usage=deviatoric  (3.7-28a,b,c)
= [°W, (G;’ ) , usage=volumetric
in which the usage flag (which is a user-input flag) determines

whether the entire elastic strain energy density, deviatoric strain
energy density or volumetric strain energy density is taken for

chain « . Here G;.’ is analogous to the strain in the 1D spring g%,
and we assume G/ = ¢, —I'; . Note that with this definition of

G; , we have
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oY ., O¥” oY oY

vy Tt aGe

i I fixed i I fixed i &y fixed i
(3.7-29a,b)

where S, are the 2" Piola-Kirchhoff stresses and Q; is analogous

to the stress g“.

Following exactly the same arguments as in the 1D case, we
obtain

o 1 a a o
0; += 05 =S, (3.7-30)

Assuming that OQ;’ =0, (3.7-30) can be written in convolution

form as

t !
O = Iexp(—%) i "S’; dt' (3.7-31)

0 T

and (3.7-31) can be numerically approximated using

1- exp(—mj
TT( t+AtS;J _ tS;o)

a

r

A
t+AtQ;z =eXp __{f tQ;{ +ﬂa
T

(3.7-32)

(3.7-32) is exact when S;‘ does not change during the time step,

and is more accurate than the formula given by Holzapfel:

+ a At o o At +At Qo t Qoo
"o =exp[—r—aj O +4 eXPK_FJ(t Sy - Sii)
(3.7-33)
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especially when — is large.
T

Dissipation calculations: If the dissipation is required, it is
calculated using

D =Qr Ty =05 (4,-Gy) (3.7-34)

)

where
o .,

—G*=Q" 3.7-35
0GroG" " ) ( )

q

is used to compute the unknown G from the known an :
If usage=combined,
ory” , OW

_ — B°C. . 3.7-36
oG, oG, d d¢,0¢,, PG ( )

where the tensor C,

s

is evaluated at the strain state G;’ . The

dissipation calculation requires the solution of a set of simultaneous
linear equations of at most order 6 (in the 3D case) at each
integration point.

If usage=deviatoric,

82‘1’“ aZWD
— ¢ — 2 C ) 3937
0G;0Gy; 0¢;0¢,, A D)m ( )

where the tensor (C D )ijrv is evaluated at the strain state G;’ . Here,

the dissipation calculation requires a singular value decomposition
of (C 5 )ijrs , since (C b )[jrs has a zero eigenvalue. A similar
situation applies when usage=volumetric, except that the
corresponding material tensor has only one nonzero eigenvalue.
The procedure given in (3.7-34) to (3.7-37) is only
approximate, since the fundamental assumption G; =& —FZ
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strictly speaking only holds for small strain analysis.

Restrictions and recommendations: The allowed values of the
usage flag depend upon the material model and finite element type,
as shown in Table 3.7-1.

In view of the restrictions, we recommend that
usage="“combined” be used in conjunction with the hyper-foam
material model, and that usage="“deviatoric” be used in conjunction
with the Mooney-Rivlin, Ogden, Arruda-Boyce and Sussman-
Bathe material models.

Mooney-Rivlin, Ogden, | hyperfoam
Arruda-Boyce,
Sussman-Bathe

Plane Plane strain, | Plane Plane strain,

stress' | axisymmetric, | stress’ | axisymmetric,

3D’ 3D

usage=combined yes no yes yes
(usage(i)=2)

usage=deviatoric yes yes no yes
(usage(i)=0)

usage=volumetric no no no yes
(usage(i)=1)

1. Usage cannot be equal to “volumetric”. This is because the material is
assumed to be fully incompressible, hence the volumetric strain energy
density is zero.

2. When the u/p formulation is used, the usage flag cannot be “combined” or
“volumetric”. This is because the modification to the volumetric stresses
caused when the usage flag is “combined” or “volumetric” is not taken into
account in the u/p formulation.

3. The only allowable value of the usage flag is “combined”. This is because

the out-of-plane stress component S must be zero, and in the Holzapfel

finite strain viscoelastic model, the only way that this can happen is if S,

is zero.

Table 3.7-1: Allowed values of the usage flag
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Time-temperature superposition: The preceding derivation
assumes that the viscoelastic response is not temperature-
dependent. One method of including the effects of temperature is
the method of time-temperature superposition.

In time-temperature superposition, the actual time ¢ is replaced
by the reduced time ¢ . The relationship between the actual time

and reduced time is given by

d¢ 1
dt  a,('0)

(3.7-38)
where ‘@ is the temperature and a, ('6) is the shift function.

Evidently

t 1
v =[——ar 3.7-39)
=l (

The shift function used here is either the WLF shift function,

log,, a,('0) = —M (3.7-40a)
0T C,+'0-6,, '
or the Arrhenius shift function
‘ 1],
log,,a;(0)=C/|~-——1,020,
9 gref
(3.7-40b)

=C, IL—L ,'0<0,,
0 grcff

where 6, is the reference temperature and C,, C, are material

. . d
constants. Notice that as ‘@ increases, a,('0) decreases and 75
t

increases.
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When using the Arrhenius shift function, the temperature unit
must be absolute (Kelvin or Rankine).

For the viscoelastic model used here, the differential equation of
the 1D model (3.7-21) becomes

dg 1 do”

+ — = ¢ 37-41
2 T B = ; ( )
and using (3.7-38), (3.7-41) can be written as
LN24 1 a a 0
¢ +———q" =p% (3.7-42)

a,(0)c” -

It is seen that the effect of temperature is to modify the time
constants. As the temperature increases, the modified time
constants become smaller, that is, the material relaxes more
quickly.

The convolution equation of the finite strain model becomes

« 6~ cjj dS’jod 3.7-43
0 = !exp( B i ¢ (3.7-43)

and (3.7-43) is numerically approximated by

Aé/ ij ij
Ta

s l_exp(_Afj
AL Y tya a T t+At ot Qo
-

(3.7-44)

The only additional consideration is to calculate A¢ , and this is
done using

AS = [ ——dr (3.7-45)
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This integration is performed numerically assuming that In a,(8)
varies linearly over the time step.

Heat generation: A user-specified fraction of the energy
dissipated by the viscoelastic model can be considered as heat
generation. This heat generation can cause heating in a TMC
(thermo-mechanical-coupling) analysis.

Specification of input: Viscoelastic effects are added to rubber-
like materials using the MATHEV bulk data entry. The MATHEV
bulk data entry includes:

» SHIFT: Indicates the shift function (none, WLF or
Arrhenius).

» Cl1, C2: The shift function material constants C,, C,

» A table with one row for each chain. Each row in the table
contains beta(i)= 4“, tau(i)=7" , hgen(i)= the heat generation
factor (fraction of dissipation considered as heat generation,
default value is 0.0), and usage(i)=usage flag (default value is
deviatoric). There is no restriction on the number of chains
permitted. The usage flag can be different for each chain.

e It is seen that the dissipation calculation can be quite expensive.
Furthermore the dissipation is not required for the stress solution.
Therefore it is the default to not perform the dissipation calculation.
The dissipation is only calculated for the chain & when the heat
generation factor is non-zero.

3.7.8 Mullins effect (Solution 601 only)

When rubber is loaded to a given strain state, unloaded, then
reloaded to the same strain state, the stress required for the
reloading is less than the stress required for the initial loading. This
phenomenon is referred to as the Mullins effect.

The Mullins effect can be included in the rubber-like materials.
The material model used is the one described in the following
reference:
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ref. R.W.Ogden and D. G. Roxburgh, “A pseudo-elastic
model for the Mullins effect in filled rubber”, Proc. R.
Soc. Lond. A (1999) 455, 2861-2877.

We briefly summarize the main concepts below.
Fig 3.7-5 shows the Mullins effect in simple tension. On initial

loading to force F,, the specimen follows the force-deflection

curve a-b-c. When the load is removed, the specimen follows the
unloading curve c-d-a. On reloading to force F,, the specimen

follows the reloading curve a-d-c, and on further loading to force
F, , the specimen follows the loading curve c-e-f. When the load is

removed, the specimen follows the unloading curve f-g-a, and, on
reloading to force F, , the specimen follows the reloading curve a-

g-f.

Force

Deflection

Figure 3.7-5: Mullins effect loading-unloading-
reloading curves

Note that any permanent set associated with the Mullins effect
is not included in the Ogden-Roxburgh model used here.

The Ogden-Roxburgh model, as implemented in Advanced
Nonlinear Solution, uses the following strain energy density
expression:

W =W, (s)+ , all except hyper-foam
Wy (&;)+ o) pt hyp (3.7-46a)
=nW (&,)+ ¢(n), hyper-foam

where W (¢, ) is the total elastic strain energy density, W, (&) is
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the deviatoric elastic strain energy density, 77 is an additional
solution variable describing the amount of unloading and ¢(77) is

the damage function. W is referred to as the pseudo-energy
function. In our implementation, the deviatoric strain energy
density is used for the (almost) incompressible materials and the
total strain energy density is used for compressible materials. For
ease of writing, we discuss only the case of compressible materials;
for incompressible materials, replace W by W, in the equations
below.

n is computed as

ﬂ=1—lﬂ%?%W;—Wﬂ (3.7-47)

r m

where erf(x) is the error function

erf(x) = %Texp(—uz )du (3.7-48)
0

W is the maximum value of /' encountered during the

deformation history and m and 7 are material constants.
@(n) is defined by

dgtn) _ (3.7-49)
dn

and is computed by numerical integration of ¢(77) =—Wn.Fora

given value of W

m?

there is a minimum value of 7 computed as

n,=1 —lerf [ﬂ} (3.7-50)

r m

The value of ¢(77) at 7 =1, is written @(77,) . (Note: the

subscript m in the term W, means “maximum”, but the subscript m
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in the term 77, means “minimum”.) The time rate of change of

#(n,) can be written as

¢(n,)=(1-1,)W, :lerf[&}l/f/m (3.7-51)

r m

Physically, ¢(77,) is interpreted as the dissipation.

During loading, W, =W, Wm >0 and 77 =1. Therefore
#(n)=0 and ¢(77m) >0 during loading.

During unloading or reloading, W, >W , W, =0 and

n,, <1 <1. Therefore #(n) #0 and ¢f(77m) =0 during unloading

or reloading.

Material constants m and » do not have any direct physical
significance. However Fig 3.7-6 shows the dependence of an
unloading-reloading curve in simple tension on these parameters. It

is seen that, for an unloading-reloading loop in which W_ >>m,

m

the initial slope of the reloading curve is reduced by the factor

1
1——. r must therefore be greater than 1.
r
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Force
Slope £,
F, i
o~ 2 1,
Slope k, + — —F,
Slope £, N rm
Deflection

Slope [1 - lerf [&Dku
r m

W = strain energy density at b

m

Figure 3.7-6: Dependence of reloading curve on

Mullins effect material constants
It can also be shown that the dissipation of a loading-unloading

cycle, as shown in Fig 3.7-7, can be written as

E 2
¢:J.00'de:ﬂ %erf(ﬂj_L l_exp _(ﬂ)
4 rpm m Jr m
(3.7-52)
where

C
W, =] ,ode (3.7-53)
A

o0 1s the engineering stress, e is the engineering strain. Therefore,

given ¢ and W from two loading-unloading cycles of different
amplitude, m and r can be computed.
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,0=Force/original area

Dissipation = shaded area

E e=displacement/
original length

Figure 3.7-7: Dissipation in Mullins effect in a
loading-unloading cycle

Heat generation: A user-specified fraction of the energy
dissipated by the Mullins effect model can be considered as heat
generation. This heat generation can cause heating in a TMC
(thermo-mechanical-coupling) analysis.

Specification of input: Mullins effects are added the rubber-like
material model using the MATHEM bulk data entry.
The rubber-Mullins data set includes:

» R, M: The material constants » and m.

» HGEN: The heat generation factor (fraction of dissipation
considered as heat generation). The default value is 0.

3.8 Gasket material model (Solution 601 only)

o Gaskets are relatively thin components placed between two
bodies/surfaces to create a sealing effect and prevent fluid leakage
(see Fig. 3.8-1). While most gaskets are flat, any arbitrary gasket
geometry can be modeled in Solution 601. The gasket material is
obtained using the MATG material entry to define the transverse
and through-thickness gasket properties together with an elastic
isotropic MAT1 material entry to define the in-plane gasket
properties.
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Gasket thickness direction
(material X axis)

Gasket in-plane

directions

Only one element
through the thickness

Figure 3.8-1: Schematic of gasket

e The sealing effect is created when the compressive load, applied
in the direction of the gasket thickness, exceeds the initial yield
stress of the gasket. The sealing effect is maintained as long as the
compressive stress does not drop beyond a specified threshold
value. The gasket ruptures if the compressive stress exceeds the
gasket’s ultimate stress. Unlike rupture, if a gasket leaks it still
maintains its load-deflection characteristics.

e The gasket model can be used with 3-D solid elements. It can
also be used with small displacement/small strain, large
displacement/small strain kinematics.

e The gasket behaves as a nonlinear elasto-plastic material when
compressed in the thickness or gasket direction. Its load-
deformation characteristics are typically represented by pressure-
closure curves. Tensile stiffness can be assumed to be constant or
zero. The closure strain is always measured as the change in gasket
thickness divided by the original gasket thickness. The gasket’s
uni-directional plasticity model speeds up computations, and allows
more flexibility in defining the shape of the loading and unloading
curves.

e The closure strain is always defined as the change in gasket
thickness divided by the original gasket thickness. It is positive in
compression. The gasket pressure has units of stress, and it is also
positive in compression.
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e Fig. 3.8-2 shows a typical pressure-closure relationship. It
consists of a main loading curve consisting of any number of
elastic segments and any number of plastic loading segments.
Loading/unloading curves can be provided for different points on
the loading curve. However, it is not necessary to define a
loading/unloading curve for each point on the main loading curve.

e FEach gasket can have one of the following five states:
Open: The gasket pressure is less than the leakage pressure.

Closed:  The gasket pressure is higher than the leakage
pressure but has not yet caused plasticity.

Sealed:  There has been plastic gasket deformation and the
current pressure is above the gasket leakage
pressure.

Leaked:  After plastic deformation, the gasket pressure has
dropped below gasket leakage pressure.

Crushed: Gasket closure strain has exceeded the rupture value.

Note that for output the gasket state is reported as an integer
with the following allowed values:

1 = Open; 2 = Closed; 3 = Sealed; 4 = Leaked; 5 = Crushed
Modeling issues

e The gasket must be modeled as a single layer of 3-D elements.
Only linear elements are possible (6-node wedge and 8-node brick
elements).

e Since the gasket has different properties in different directions,
it is an orthotropic material. The material X-axis must be set to the
gasket normal direction. Solution 601 attempts to automatically
define the gasket’s material axes if they are not explicitly defined
by the user.
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Loading curve

Ta

" Imtlal. yield Rupture
§ point point
8
&
ot
A2
&
© Leak
cakage Multiple loading/

ressure SN .
p unloading curves

Closure strain

Figure 3.8-2: Pressure-closure relationship for a gasket material
e The top and bottom surfaces of a gasket can be separate from
those of the mating surfaces. In this case, they should be connected
via contact. The gasket can also share a common surface with the
intended mating surface. In this case, contact is not needed,
however, the gasket cannot separate from its target. A gasket
surface can also be attached to its mating surface via tied contact,
mesh glueing, constraint conditions, or rigid links.

e The number of points in all loading/unloading curves must be
identical for efficiency. Also the last point in each
loading/unloading curve must be one of the input point on the main
loading curve.

o The leakage pressure is automatically set to 1% of the initial
yield pressure.

The input: In addition to the pressure-closure relationships the
following transverse material properties are needed for the gasket:
transverse shear modulus, tensile Young’s modulus. The following
in-plane material properties are also required: Young’s modulus,
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Poisson’s ratio, thermal expansion coefficient and density.
Output variables: The following gaskets output variables are
available: Gasket pressure, Gasket closure strain, Gasket yield

stress, Gasket plastic closure strain, Gasket status.

¢ Note that all these output variables are scalar quantities.

3.9. Shape memory alloy (Solution 601 only)

e The Shape Memory Alloy (SMA) material model is intended to
model the superelastic effect (SE) and the shape memory effect
(SME) of shape-memory alloys. It is defined using the MATSMA
material entry.

e The SMA material model can be used with rod, 2-D solid, 3-D
solid and shell elements. It is available only for implicit analysis
(Solution 601).

e Shape memory alloy materials can undergo solid-to-solid phase
transformations induced by stress or temperature. The high
temperature phase is called austenite (A) with a body-centered
cubic structure and the low-temperature phase is called martensite
(M) with a monoclinic crystal structure in several variants.

Fig.3.9-1 shows a schematic SMA stress-temperature diagram.
The martensite phase in two generalized variants and the austenite
phase are shown, as well as stress- and temperature-dependent
transformation conditions. The martensite phase is favored at low
temperatures or high stresses. Upon heating from low temperature
the material begins transforming from martensite to austenite at
temperature 4;. The transformation is 100% complete at
temperature A, If the material is then cooled again, the austenite
starts transforming back to martensite at temperature M;. This
transformation is 100% complete at temperature M. These four
temperatures are also stress dependent with high stresses favoring
the martensite phase. This stress dependence is assumed linear with
slope C), and C, for the martensite and austenite temperatures,
respectively. A typical variation of volume fraction of martensite in
the SMA material with temperature is shown in Fig. 3.9-2.
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Detwinned
martensite A Cu Cu C, Cs
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Figure 3.9-1: SMA stress-temperature phase diagram
Transformation at 6, = 0

--------------- Transformation at 6, > 0
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Figure 3.9-2: Volume fraction of martensite vs. temperature

¢ A typical uniaxial isothermal stress-strain curve is shown in Fig.
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3.9-3.

CA CSA
T>A, T<A

A 4
[ 4

(2) (b)

Figure 3.9-3: Schematic of stress-strain curves for shape-memory alloys

(a) superelasticity; and (b) shape memory effect

o The superelastic effect is evident when the material is deformed
at temperature 7>A4; and is displayed in Fig.3.9-3(a). The stress
cycle application induces transformations from A—M and then
from M—A to exhibit the hysteresis loop. The shape memory
effect is evident when the material is deformed at temperature 7<A;
and is displayed in Fig.3.9-3(b). A residual transformation strain
remains after unloading; however heating the material to
temperature above Ar leads to thermally induced M—A
transformation and the recovery of transformation strain.

¢ Both shape memory effects due to transformation from
martensite to austenite and due to re-orientation of the martensite
are captured by modeling the twinned and detwinned martensites as
different phases.

e The SMA material model is based on the following equations:

» The total strain,

c=&+&' +&°
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where

£°= elastic strain
0 .
&~ = thermal strain

t ) .
£ = transformation strain; to be evaluated

» The one-dimensional macro-scale model,

S=¢ +Gs 0<g<l
§+§A:1

e'=e"an s

o=((1-8E, +EE, e —&" —&'mnl)

& = twinned martensite volume fraction
& = detwinned martensite volume fraction
&y = austenite volume fraction

& e = maximum recoverable residual strain; a material
property usually obtained from a simple tension test
when the material is fully detwinned martensite (& = 1)

» The flow rule of three-dimensional constitutive model,

r t ot
A(c"ij - Aé:sgmaxnij

3(8; . .
n. = \/g —L |; for the martensitic transformation

(o2

t
t 3 & ;
n. =,|—| — |; for the reverse transformation

y 2 Et
where

S;; = deviatoric stresses
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- /3 . . .
O =,|75;8; 1sthe effective von Mises stress

_ 3 . ) . .
=, = 82. 82. is the effective transformation strain

)

This results in the following equation for deviatoric stress
calculation:

(+AL t+AtE(é:) (+AL ¢
ASij :H_Ttv(éj)( Agij _Agij)

where

t+At _n t+At 1 t .t
= o= &
y y y

» Four phase transformation conditions,

1. Starting condition for the martensitic transformation

fMS :\/E_CM(H_MS)

2. Ending condition for the martensitic transformation

fu, =31, -C\,(0-M )

3. Starting condition for the reverse transformation

fi =3, —C,(0- 4)

4. Ending condition for the reverse transformation

f1, =3, =C(6-4))
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» The phase transformation rate using linear kinetic rule
(Auricchio and E. Sacco, 1999),

Ag—Rf A
fi

t+At t
Af — é%_C(HAte_ te)
2 o

where, for the austenite to martensite transformation,
fr=-Su,, ¢=Cyand R:=1-¢
and for the reverse martensite to austenite transformation,

fr=1s, ¢=C and Re=¢

» Evolution of single-variant detwinned martensite:
Martensite re-orientation is based on the following condition

Jr= \/E —Crf -0y

where

0, = material yield property at 8 =0

Cr = slope of yield function temperature variation

Austenite to martensite transformation leads to

Martensite to austenite transformation leads to proportional
transformation of the twinned and detwinned phases:
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. _ &
3 £

e Computational steps for the stress-integration of the SMA
model are as follows (Kojic and Bathe, 2005):

1. Calculate the trial deviatoric stresses, assuming no additional
phase transformation or re-orientation,

t+At TR __ E(té:) (t+At "
Sij : &)
1+v('é)
2. Check for martensitic re-orientation,
fr>0and ‘& <& and ‘£ <1
Check for austenite to martensite transformation,

S, Ju, <0 and '‘E<1and Af >0

Check for martensite to austenite transformation,
fi, [, <0 and '£ >0 and Af <0

3. In case of martensitic re-orientation solve the following
governing equation:

g2 (Afg) — % t+AtSij t+AtSij _ CR t+At0 _ O_R — 0

(3.9-1)

t+AtE A .
t+AtSii — t+At( é:) (t+Atgii _Aés . g:nax t+Atnit')
I '
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The martensite reorientation calculation step is optional; it is
activated when oz > 0 is input.

4. In case of austenite to martensite transformation, solve the
following governing equation:

AE)=ASE -
2BD=A8 -

t+AtR t+At it
¢ |:§ Jz(Af) Jz _c(HAte_te)}:O

2 [+AIE
(3.9-2)

where

I+AZE(A§) .
t+AtS.- — t+At€.. _A A 'gt I+Atn%"
y 1+ t+AtV(A§) ( ij é:v( 5) max g/)

R.=1-¢, f; =—fo and ¢=Cy

5. In case of martensite to austenite transformation, solve the
governing equation (3.9-2) with

R.=¢, f,=/f,and c=C,

6. Update history-dependent variables for this time step/iteration
step.

7. Calculate the consistent tangent constitutive matrix.

ref. M. Kojic and K.J. Bathe, Inelastic Analysis of Solids and
Structures, Springer, 2005

ref.  F. Auricchio and E. Sacco, “A Temperature-Dependent
Beam for Shape-Memory Alloys: Constitutive
Modelling, Finite-Element Implementation and
Numerical Simulation”, Computer Methods in Applied
Mechanics and Engineering, Vol. 174, pp. 171-190
(1999)
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3.10 Viscoelastic material model (Solution 601 only)

e The viscoelastic model can be used with the rod, 2-D solid, 3-D
solid and shell elements.

e The viscoelastic model can be used with the small
displacement/small strain, large displacement/small strain and
large displacement/large strain kinematics (2-D solid and 3-D
solid elements only).

When used with the small displacement/small strain kinematics,
a materially-nonlinear-only formulation is employed, when used
with the large displacement/small strain kinematics, a TL
formulation is employed and when used with the large
displacement/large strain kinematics, the ULH formulation is
employed.

e The mechanical behavior for an isotropic and linear viscoelastic
material may be expressed in tensor notation as

dG(r)

5;()=2G(0)e, (t)+2.[el](t— 7) (3.10-1)

dK(7) |

0, (1) = 3K(0)e, (1) +3[ £, (¢ = 7) (3.10-2)

where ¢ is the time, s, =0, — 5 70 is the deviatoric stress, 0
3 y

1
is the Kronecker delta, o, is the stress, e; = ™3 —0,&y is the

deviatoric strain, &; is the strain, G(¢) is the shear modulus and
K(?) is the bulk modulus.
In the presence of a temperature variation €(¢) the stresses for

an isotropic and thermorheologically linear viscoelastic material
may be written as
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dG(9)

5; (1) = 2G(0)e, (t)+2f e;(5—¢)——>— e

dé  (3.10-3)

¢
0, (1) = 3K<o>ekk<r>+3j T ) e

dg
(3.10-4)
where

T t
¢=[wlom)dn, &=[y[o(r)]dz (105
0" 0"
and the thermal strain is given by

g/ik( ) 3“ H(t) [‘9 TALPHA] 3“ )[GO_QTALPHA](3‘10-6)

a (9(1‘)) is the temperature-dependent coefficient of thermal
expansion and W (?) is the shift function, which obeys

@)=t w0, Lo @i

Note that &,,,,,,, is the reference temperature used for thermal

strain calculation.

In equations (3.10-3) and (3.10-4) it is assumed that the
mechanical and thermal responses are uncoupled. Furthermore if
the temperature is constant, equations (3.10-3) and (3.10-4) reduce
to equations (3.10-1) and (3.10-2).

e We assume the following thermo-material properties:

Ylel

G(N)=G,+).Ge™ (3.10-8)
i=1
Yis

K@t)=K,+) Ke™ (3.10-9)

i=1
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O(t) # 0 (3.10-10)
a=a(0(t)) (3.10-11)

where G, and K are the long-time shear modulus and bulk

modulus respectively, £,

1

and y, are the decay constants for the

shear modulus and bulk modulus respectively and 77, and 77, are

the number of time-dependent terms for the shear modulus and
bulk modulus respectively. Equations (3.10-8) and (3.10-9) are
referred to in the literature as Prony or Dirichlet series. 77, and 77,
are limited to a maximum value of 15.

The shift function used is either the Williams-Landell-Ferry
(WLF) equation, written as follows

C,(6-6,)
lo g)=—"+ U 3.10-12
glOl//( ) C2+(H—00) ( )
or the Arrhenius shift function
1 1
log,,w(0)=C | -——|,026,

0 6,

(3.10-13)

1 1
=C,|———1,0<8
2(9 90] 0

in which C; and C; are material constants, and 6, is defined as the

initial temperature of the model, which must be the same as the
reference temperature of the viscoelastic material model.

e The viscoelastic material is specified using the MATVE bulk
data entry. The MATVE bulk data entry uses TABVE bulk data
entries for the input of the shear and bulk modulus relaxation
functions.

e The nodal point temperatures are input as discussed in Section
5.6.

e For more information, see the following references:
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ref. ~ W.N. Findley, J.S. Lai and K. Onaran, Creep and
relaxation of nonlinear viscoelastic materials, Dover
Publications, 1976.

ref.  R.L. Frutiger and T.C. Woo, “A thermoviscoelastic
analysis for circular plates of thermorheologically simple
material”, Journal of Thermal Stresses, 2:45-60, 1979.

3.11 Heat transfer materials (Solution 601 only)

e Heat transfer materials are available for heat transfer analyses
and coupled structural heat transfer analyses (SOL 601,153 and
SOL 601,159)

e The isotropic materials in this section (MAT4 and MATT4) are
available for rod, beam, 2-D solid, 3-D solid, and shell elements.
The orthotropic materials (MATS and MATTS) are only available
for 3-D solid and shell elements.

e The convection heat transfer coefficient and heat generation
capacity are input via the MAT4/MATS entries. However, in this
manual they are considered as loads and boundary conditions and
are therefore addressed in Chapter 5.

3.11.1 Constant isotropic material properties

e This material model is obtained with a MAT4 material entry.
The thermal conductivity and heat capacity are independent of
temperature and time and do not exhibit any directional
dependence due to the material.

3.11.2 Constant orthotropic conductivity

e This material model is obtained with a MATS material entry.
The thermal conductivity is orthotropic, that is, the model exhibits

a directional dependency. Three constants &, k,,k, give the
thermal conductivity along material axes (1,2,3), respectively.

e The heat capacity is isotropic for this model.
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3.11.3 Temperature dependent thermal properties

e Both the constant isotropic and the constant orthotropic material
models can be made temperature dependent by adding MATT4 or
MATTS material entries.

e Both thermal conductivity and heat capacity can be made
temperature dependent. In this case they are defined using
piecewise linear input curves.
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4. Contact conditions

e Contact conditions can be specified in Advanced Nonlinear
Solution to model contact involving 3-D solid elements, shell
elements, 2-D solid elements, and rigid surfaces.

e Very general contact conditions are assumed:

» The points of contact are assumed not known a priori.

» Friction can be modeled according to various friction laws
(only standard Coulomb friction for Solution 701).

» Both sticking and sliding can be modeled.

» Repeated contact and separation between multiple bodies is
permitted in any sequence.

» Self-contact and double-sided contact are permitted.
» Tied contact can be modeled (Solution 601 only).

» A small displacement contact feature is available.

Some of the contact algorithms used in Advanced Nonlinear
Solution are described in the following references:

ref. KIB ref.  Bathe, K.J. and Chaudhary, A., "A Solution Method for
Section 6.7 Planar and Axisymmetric Contact Problems," Int. J.
Num. Meth. in Eng., Vol. 21, pp. 65-88, 1985.

ref.  Eterovic, A. and Bathe, K.J., "On the Treatment of
Inequality Constraints Arising From Contact Conditions
in Finite Element Analysis," J. Computers & Structures,
Vol. 40, No. 2, pp. 203-209, July 1991.

ref.  Pantuso, D., Bathe, K.J. and Bouzinov, P.A."A Finite
Element Procedure for the Analysis of Thermo-
mechanical Solids in Contact," J. Computers &
Structures, Vol. 75, No. 6, pp. 551-573, May 2000.

e Contact in Advanced Nonlinear Solution is modeled using
contact sets, contact surfaces (regions), contact segments and
contact pairs, as explained in much greater detail below.
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e Table 4-1 lists the case control commands related to contact,
Table 4-2 lists the bulk data entries related to contact surface
definition, and Table 4-3 lists the bulk data entries related to
contact set definition.

Contact Case Control
Command

Description

BCSET Selects which contact set to use
BCRESULTS Selects which contact results to output
Table 4-1: Case Control commands related to contact
Contact Surface Bulk Description
Data Entry
BSURFS Define contact surface on 3-D solid elements (by element and
nodes)
BSURF Define contact surface on shell elements (by element number)
BCPROP Define contact surface on shell elements (by property ID)
BCPROPS Define contact surface on free faces of 3-D solid elements (by
property ID)
Define contact surface on 2-D axisymmetric, plane strain and
BLSEG :
plane stress solid elements (by node numbers)
BCRPARA Set parameters for contact surface

Table 4-2: Bulk Data entries related to contact surface definition

Contact Set Bulk Data Description
Entry

BCTSET Define contact sets

BCTADD Define union of contact sets
BCTPARA Set parameters for contact sets

Table 4-3: Bulk Data entries related to contact set definition
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e Most of the features and tolerances needed for contact sets are
provided in the BCTPARA entry. An explanation of this entry is
provided in the NX Nastran Quick Reference Guide. Some contact
settings however apply to all contact sets (such as contact
convergence tolerances, suppression of contact oscillations). These
settings are provided in the NXSTRAT entry.

4.1 Overview

e Contact sets (and their contact surfaces) in Advanced Nonlinear
Solution can be either 2-D or 3-D. The contact surfaces should be
defined as regions that are initially in contact or that are anticipated
to come into contact during the solution.

» 2-D contact surfaces are either axisymmetric or planar and must
lie in the global XZ plane, with all X coordinates equal to zero.

» A 3-D contact surface is made up of a group of 3-D contact

segments (faces) either on solid elements, shell elements or
attached to rigid nodes. See Fig. 4.1-1 for an illustration.

3-D contact surface pair

Contactor surface
(surface of cylinder)

Target surface
(top surface of

Body 2

Figure 4.1-1: Typical contact surfaces and contact pair
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e A contact pair consists of the two contact surfaces that may
come into contact during the solution. One of the contact surfaces
in the pair is selected to be the contactor surface and the other
contact surface to be the target surface. In the case of self-contact,
the same surface is selected to be both contactor and target. (Self-
contact is when a contact surface is expected to come into contact
with itself during the solution.)

e Within a contact pair, the nodes of the contactor surface are
prevented from penetrating the segments of the target surface, and
not vice versa.

o Fig. 4.1-2 shows the effect of contactor and target selection on
the different contact configurations.

No penetration Target

O
/\ surface
© o

/\ Contactor

surface

. Contactor
Nope}\\fzi'// surface
O
o o Target
surface

Figure 4.1-2: Contactor and target selection

e In Solution 601 at least one of the two contact surfaces in a
contact pair must not be rigid. If one surface is rigid, this surface
should, in most cases, be the target surface.

e In Solution 701 both contactor and target surfaces can be rigid if
the penalty algorithm is used. Otherwise, the same restriction
mentioned above for Solution 601 applies.
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¢ Rigid surfaces have no underlying elements and therefore no
flexibility apart from rigid body motions. All their nodal degrees of
freedom must be either fixed, have enforced displacement, or be
rigidly linked to a master node which is defined on the BCRPARA

entry.

e Symmetric contact pairs can be defined, where in one contact
pair surface A can be the contactor and surface B the target, and in
another contact pair surface B is the contactor and surface A is the
target. A non-zero contact surface compliance should always be
used with symmetric contact pairs.

e Basic concepts

ref. KJB e The normal contact conditions can ideally be expressed as

Section 6.7.2
g20; 4120; g1=0 (4.1-1)

where g is a gap, and 4 is the normal contact force. Different
algorithms may vary in the way they impose this condition.

e For friction, a nondimensional friction variable 7 can be defined
as

T =% (4.1-2)

where F7 is the tangential force and A is the normal contact force.

e The standard Coulomb friction condition can be expressed as

|z'| <1
and 7| <1 implies i =0 (4.1-3)
while |T| =1 implies sign(u) = sign(r)

where u is the sliding velocity.

e In static analysis, the sliding velocity is calculated by dividing
the incremental sliding displacement by the time increment. Hence,
time is not a dummy variable in static frictional contact problems.
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When (Coulomb) friction is used, the friction coefficient can be

constant or calculated from one of several predefined friction laws.

The possible states of the contactor nodes and/or segments are

No contact: the gap between the contactor node and target
segment is open.

Sliding: the gap between the contactor node and the target
segment is closed; a compression force is acting onto the
contactor node and the node kinematically slides along the
target segments (either due to frictionless contact to a frictional
restrictive force less than the limit Coulomb force.

Sticking: as long as the tangential force on the contactor node
that initiates sliding is less than the frictional capacity (equal to
the normal force times the Coulomb friction coefficient), the
contactor node sticks to the target segment.

Old and new contact surface representations

Two types of contact surface representation are supported in
Advanced Nonlinear Simulation, an old and a new contact surface
representation (set via the CSTYPE parameter in the NXSTRAT
entry). The new contact surface representation is the default. The
main differences between the two representations are:

In the old representation, contact segments are linear (2 nodes

for 2D contact; 3- or 4 nodes for 3D contact). In the new
representation, contact segments can be linear or quadratic (up to 3
nodes for 2D contact, up to 9 nodes for 3D contact).

In the new representation, contact is based on the actual faces of

the contact segments which results in more accurate contact
constraints.

The new representation uses a more accurate contact traction

calculation algorithm.
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- The new representation generates more accurate contact
constraints for 3-D contact segments resulting from 10, 11 node tet
elements and 20, 21 node brick elements. These elements generate
zero (10, 11 node tets) or negative (20, 21 node bricks) contact
forces at their corner nodes when subjected to a uniform contact
pressure.

- Tractions are reported as nodal quantities in the new surface
representation.

The new contact surfaces cannot be used with the following
features:

- Segment method algorithm
- Rigid target algorithms

¢ Single-sided contact

For single-sided contact, which is defined using NSIDE=1
parameter on the BCTPARA card (see Fig. 4.1-3), one side of the
contact surface is assumed to be internal and the other side to be
external. Any contactor node within the internal side of a target
surface is assumed to be penetrating and will be moved back to the
surface. This single-sided option is ideal for contact surfaces on the
faces of solid elements since in that case it is clear that one side is
internal to the solid while the other is external. In this case, the
external side can usually be predicted from the geometry. This
option is also useful for shells when it is known that contact will
definitely occur from one direction. In this case, however, the
program cannot intuitively predict the internal side of the contact
surface.

¢ Double-sided contact

In double-sided contact, which is defined using NSIDE=2
parameter on the BCTPARA card (see Fig. 4.1-4), there are no
internal or external sides. The contactor surface nodes in this case
are prevented from crossing from one side of the target contact
surface to the other during solution. This option is more common
for shell-based contact surfaces. If a contactor node is one side of
the target surface at time ¢, it will remain on the same side at time
t + At . Note that double sided contact is only supported in 3-D.
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Internal side
(no contactor nodes allowed)

Target
surface
External side
Figure 4.1-3: Single-sided contact surface
Contactor node cannot
penetrate lower side
Target
{ surface

Contactor node cannot
penetrate upper side

Figure 4.1-4: Double-sided contact

e Tied contact
When the tied contact feature is selected for a contact set (TIED
parameter in the BCTPARA card), Solution 601 performs an initial
contact check at the start of the analysis. All contactor nodes that
are found to be in contact or overlapping are permanently attached
to their respective target segments. Contactor nodes that are not in
contact are also set to be tied if the contact gap is less than a user-
specified contact tolerance (TIEDTOL parameter in the BCTPARA
card). This tolerance is useful when the contact gap is due to non-
matching finite element discretizations of the contacting surfaces.
The tied contact feature is conceptually similar to using Rigid
elements or multipoint constraints to attach the node to the target
surface. The main difference is that the coefficients for the rigid
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elements are automatically determined by the program and they are
only applied for the nodes that are initially in contact. The basic
idea is illustrated in Fig. 4.1-5.

o Contactor surface
Permanent rigid

connections

Gap between
contact surfaces %]
(exaggerated)

Target surface

Figure 4.1-5: Tied contact option

Tied contact is not "real" contact because there can be tension
between tied contact surfaces. Also no sliding can occur between
tied contact surfaces.

The tied contact option can be used to connect two incompatible
meshes. However, the mesh glueing feature described in Section
5.9 produces more accurate results.

If the contact surfaces initially overlap, they are not pushed back
to eliminate the overlap. Similarly, if there is an initial gap it is not
eliminated.

The tied contact constraint equations are computed based on the
initial nodal positions only. The constraints generated in tied
contact are not updated during the analysis. Hence, the constraints
will be inaccurate if the bodies experience large rotations.

e Small displacement contact

If the small displacement contact feature is used (CTDISP =1 in
the NXSTRAT entry or DISP =1 in the BCTPARA entry), the
contact constraints are generated once in the beginning of the
analysis and are kept constant, as shown in Fig. 4.1-6. A target
location is identified for each contactor node if possible, and its gap
and normal direction are determined. The local coordinates of the
target point and the normal direction are then kept constant for the
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Target surface

Original geometry: Determine target
point x} and normal vector N

remainder of the analysis. This is in contrast to the standard large
displacement contact, where the contact constraints are updated
every iteration, and the contactor nodes can undergo any amount of
sliding.

This feature is useful when there is very little relative
deformation around the contact region. For such problems, it is
much more computationally efficient to perform only one detailed
contact search at the beginning of the analysis, rather than
repeating the search every iteration. Also, in some cases,
convergence can also be slow or unachievable with the general
algorithm, for example as nodes oscillate between one target
segment and another equally valid neighboring target segment.

X,

Contactor surface

Small displacement contact acceptable

X; |

Small displacement contact not Small displacement contact not
acceptable due to excessive displacement acceptable due to excessive rotation

Figure 4.1-6: Small displacement contact feature

¢ Contact result output is controlled by the BCRESULTS Case
Control command. The user can request output of nodal contact
forces and/or nodal contact tractions. Tractions are only generated
on contactor surfaces.
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4.2 Contact algorithms for Solution 601

e Solution 601 offers three contact solution algorithms (set via the
TYPE flag in the BCTPARA entry):

» Constraint-function method,
» Segment (Lagrange multiplier) method, or
» Rigid target method

e Each contact set must belong to one of these three contact
algorithms. However, different contact sets can use different
algorithms.

¢ All 3 contact algorithms can be used with or without friction.
4.2.1 Constraint-function method

e In this algorithm (selected using TYPE=0 on BCTPARA card),
constraint functions are used to enforce the no-penetration and the
frictional contact conditions.

The inequality constraints of Eq. (4.1-1) are replaced by the
following normal constraint function:

+A 1Y
w(g,/l):g2 - (gz ]+£N

where ¢y is a small user-defined parameter. The function is shown
in Fig. 4.2-1. It involves no inequalities, and is smooth and
differentiable. The parameter ¢y is set via the EPSN variable in the
BCTPARA entry. The default value of 1.0x10™"? is suitable for
most applications and should rarely be modified.

It is possible to set EPSN=0.0. In this case Solution 601
automatically determines EPSN. However, this determination may
not result in correct results for some problems. Hence EPSN=0.0
should not be used in general.
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wi(g,A)

-

Figure 4.2-1: Constraint function for normal contact

e The constraint function method is also used to approximate the
rigid non-differentiable stick-slip transition of Eq. (4.1-3). This
results in a smooth transition from stick to slip and vice versa, and
it also results in a differentiable friction law that is less likely to
cause convergence difficulties.

Two friction regularization algorithms are available in
Advanced Nonlinear Solution. Both constraint functions take the
form V(L't,r) =0.

The newer default algorithm involves a more accurate
linearization of the frictional constraints and, in general, converges
much faster than its predecessor. The v function is defined
implicitly as a multilinear function as shown in Fig. 4.2-2. Here ¢r
is a small parameter (EPST parameter in the BCTPARA entry)
which has the physical meaning of the "sticking velocity", that is,
the maximum velocity corresponding to sticking conditions.

In the old friction algorithm, the v function is defined implicitly
via

2 (a—vJ
T+ v ——arctan =0

n &

Here ¢ is a small parameter (EPST parameter in BCTPARA entry)
which provides some elastic slip to the Coulomb friction law as
shown in Fig. 4.2-3. Guidelines for selecting ¢r are provided in
section 4.7.3.

200

Advanced Nonlinear Solution — Theory and Modeling Guide



4.2: Contact algorithms for Solution 601
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Figure 4.2-2: Frictional contact constraint function for new friction
algorithm

-10

Figure 4.2-3: Frictional contact constraint function for old friction
algorithm

The old friction algorithm can still be accessed via the FRICALG
parameter in the NXSTRAT entry.
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4.2.2 Segment (Lagrange multiplier) method

¢ In this method (selected using TYPE=1 on BCTPARA card),
Lagrange multipliers are used to enforce the contact conditions of
Eq. (4.1-1). The kinematic conditions are enforced at the contactor
nodes, and the frictional conditions are enforced over the contact
segments.

e This method involves distinct sticking and sliding states. It also
calculates this state for each contactor node based on the contact
forces on the target segment.

4.2.3 Rigid target method

e This is a simplified contact algorithm (selected using TYPE=2
on BCTPARA card). The algorithm is fully described in Section
4.8.

4.2.4 Selection of contact algorithm

¢ Our experience is that in most frictionless contact problems the
constraint function method is more effective than the segment
method. The constraint function method is the default.

e For problems involving rigid targets, either the constraint
function or the rigid target algorithm can be employed.

e Note that the target surface can be rigid in all three contact
algorithms. The presence of a rigid target does not mean that the
rigid target algorithm must be used.

4.3 Contact algorithms for Solution 701

e Solution 701 offers three contact solution algorithms (set via the
XTYPE flag in the BCTPARA entry):

» Kinematic constraint method,
» Penalty method, or
» Rigid target method
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o Each contact set must belong to one of these three contact
algorithms. However, different contact sets can use different
algorithms.

e All Solution 701 contact algorithms can be used with or without
friction.

4.3.1 Kinematic constraint method

o This algorithm is selected by setting XTYPE=0 on BCTPARA
card). It is the default explicit contact algorithm for Solution 701.

e A predictor step is first done without applying contact
constraints or forces. Then displacements are evaluated and
penetration is detected and corrected. The exact correction of
displacements requires the solution of a non-diagonal system of
equations. Instead, a good approximation is done. In this case, for
each penetrating contactor node, a penetration force

. o
Fév :Mcag :MCA_;VzN

is calculated. This is the force required to remove the penetration at
the contactor node. However, not all the penetration will be
removed by moving the contactor. The target will get some motion
depending on its mass relative to the contactor and how many

contactor nodes are touching it. So, the Fév force above is
projected to the target segment nodes:

N N
F, =NF.
where N; is the shape function relating the contactor displacement
to that of each target node. Similarly, the mass of the contactor
node is projected to the target in the same way:

M, =NM,

and this mass is added to that of the target node itself. Then the
acceleration of the target node is determined as
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ay (M, +Y M,)=>F

This correction is then used to update the target displacements. The
contactor acceleration is

N _ N N
A4c =ac _ZaT]vi

e For friction, a similar approach is used. A correction force is
calculated

where vr is the tangential sliding velocity. However, this force
cannot exceed the limit force based on the normal force and the
coefficient of friction

F/ =min(uF) F")

The rest of the procedure is very similar to the case of normal
contact. The form of the equations is different if there is damping,
and is also different if the previous and current time steps are not
the same.

e A modification is also required for rigid targets, which are
common in contact. The form of the equations in this case depends
on whether the rigid target has natural or essential boundary
conditions.

e The kinematic constraint algorithm should not be used when the
target surface degrees of freedom are fixed.

4.3.2 Penalty method

o In this algorithm (selected using XTYPE=1 on BCTPARA
card), contact conditions are imposed by penalizing the inter-
penetration between contacting surfaces. When a penetration is
detected, a normal force of
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F=A4A P=4 N (K,6,+K,0,)

is applied to the contactor node, where K is the normal stiffness,
Kp is a normal rate stiffness, dy is the penetration, O, is the

penetration rate, N is the normal vector pointing towards the
contactor, A4 is the contact area and P is the normal contact traction.
An opposing force is distributed to the target nodes.

¢ Similarly, in the presence of friction, the relative sliding
velocity between the two bodies is penalized as follows:

F, :min(A KTXT,y”FN””i—T”J
T

where xr7 is the relative tangential sliding displacement.

¢ The normal and tangential penalty stiffnesses Ky and Ky can be
selected by the user, or determined automatically by the program
based on the following BCTPARA parameters: XKN, XKNCRIT,
XKT, XKTCRIT. The penalty rate stiffness K can be explicitly
selected by the user, or determined by the program as a ratio of
critical damping for the contact node (using the XDAMP and
XNDAMP parameters).

e  When penalty stiffnesses are automatically determined they are
chosen based on the masses of the contactor nodes and the time
step. They are selected such that they have a minimal effect on the
existing time step.

Note that unduly small penalty stiffnesses will lead to excessive
penetrations, and unduly large penalty stiffnesses will lead to
excessive oscillations or unstable explicit time integration.

4.3.3 Rigid target method
e This algorithm is similar to the rigid target method used in

Solution 601. It is selected using XTYPE=3 on the BCTPARA
card. The algorithm is fully described in Section 4.8.
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4.3.4 Selection of contact algorithm

e The kinematic constraint method is the default in Solution 701.

e The penalty method is the simplest and fastest of the explicit
contact algorithms. It can also handle rigid contactor and target
surfaces. It also allows a contactor node to be in contact with
multiple targets simultaneously.

e The main disadvantage of the penalty method is that contact
conditions are not exactly satisfied and it usually shows oscillations
in contact forces. These oscillations can usually be removed by
using penalty damping. It is also sensitive to the choice of the
penalty stiffness. If that stiffness is too large it leads to instability
and oscillations, and if it is too small it leads to excessive
penetrations.

e The default penalty stiffness selected by Solution 701 is, in
most cases, a suitable compromise.

4.4 Contact set properties

This section describes the main options available for contact sets.

¢ Contact surface offsets

Penetration of a contact surface occurs when the plane or line
defined by the contact segment nodes is penetrated. However, an
offset distance can be specified which causes the actual contact
surface to be offset from the plane defined by the contact surface
nodes. In the case of double-sided contact, the offset creates two
separate surfaces above and below the reference surface. Note that
if the contact surface is on a shell then half the shell thickness can
automatically be used as the offset (OFFTYPE=2 in the BCTPARA
entry). Fig. 4.4-1 shows the possibilities for single and double-
sided contact. Note that the offset distance should be small
compared to the contact surface length.

Offsets for a whole contact set are specified via the OFFSET
parameter in the BCTPARA entry, while offsets for a specific
contact surface are set via the OFFSET parameter in the
BCRPARA entry. If one of the contact surfaces has a defined
offset, it will overwrite the contact set offset.
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Actual contact
surface

P .
. Internal side AN Defined contact

surface

(a) single-sided contact
(using NSIDE=1, OFFSET=t on BCTPARA card)

Offset

Actual contact
surfaces

Offset

Defined contact surface
(b) double-sided contact
(using NSIDE=2, OFFTYPE=1, OFFSET=t on BCTPARA card)

Figure 4.4-1: Contact surface offsets

The use of contact surface offsets in double-sided contact is not
recommended.

e Continuous normals (Solution 601 only)

The normal direction to a contact segment will in general not be
continuous between segments as illustrated in Fig. 4.4-2. This
sometimes causes convergence difficulties due to the non-unique
normals at nodes and segment edges. The continuous normals
feature first calculates nodal normals as averages of all the normals
from the attached segments, and then interpolates these nodal
normals across the segment. This leads to a uniformly varying
normal direction.

¥/9/¢“77\¢ T

\ \ 4 /
\| /

Nodal normals

(a) Discontinuous normals (b) Continuous normals

Figure 4.4-2: Contact surface normals
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The SEGNORM parameter in the BCTPARA card determines
the setting for continuous normals. Continuous normals
(SEGNORM=1) is the default for single-sided contact, and
discontinuous normals (SEGNORM=-1) is the default for double-
sided contact.

In modeling target surfaces with sharp corners, either use
discontinuous normal vectors, or use small segments near the
corners, in order that the normal vectors for segments near the
corners be computed correctly. See Section 4.7.2 for modeling tips
related to this feature.

Continuous normals give poor results with explicit time
integration. Therefore, they are blocked from Solution 701.

e Contact surface depth

By default, the contact region extends for an infinite distance below
the contact surface (for single-sided contact). However, a contact
surface depth can be defined (by setting the PDEPTH parameter in
the BCTPARA card), below which the contact surface is no longer
active. The default PDEPTH=0.0 results in an infinite contact depth
extension. Fig. 4.4-3 shows some of the possibilities.

Contact surface is used in self-contact.

A B A B

c ¢ PDEPTH C
G
Targetdepth G
D D
F F
. E E
Continuum created
by segment A-B Nodes F and G have not
penetrated segment A-B.
Nodes F and G have

penetrated segment A-B.

a) Target depth option not used b) Target depth option used

Figure 4.4-3: Contact surface depth.
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o Initial penetration
The treatment of initial penetrations in Solution 601 is governed by
the INIPENE parameter in the BCTPARA entry. By default, if
there is initial overlap (penetration) between a contact node and a
target segment in the first solution step, the program attempts to
eliminate the overlap. Advanced Nonlinear Solution can eliminate
the overlap at the first step or over a user-specified time using the
TZPENE parameter in BCTPARA. This feature is useful if the
initial penetrations are too large to be eliminated in a single step.

The program can also calculate initial penetrations at the start of
solution and ignore them in future steps. In this case the program
does not detect penetration for a contactor node if the amount of
penetration is less than or equal to the recorded amount. Fig. 4.4-4
shows some of the possibilities. See Section 4.7.2 for modeling tips
related to this feature.

Initial penetrations can also be set to gap override (see below).

¢ Gap override

In the gap override feature (set via the initial penetration flag
INIPENE=3 in BCTPARA), the gaps and penetrations calculated
from the finite element mesh are replaced by a fixed user-specified
value (GAPVAL parameter in the BCTPARA entry). A positive
value represents an initial gap, zero means that the contact is
touching the target, and a negative value represents an initial
penetration (which can be removed either immediately or over a
user-specified time as explained in the Section on initial
penetration above).

This feature is useful for problems involving curved meshes in
close proximity, such as the shrink fit example shown in Fig. 4.4-5.
The gaps and penetrations measured from the discretized finite
element mesh are sometimes inaccurate for such problems (unless
matching meshes are used). In some problems, such as that shown
in the figure, a constant geometry based overlap should be applied
to all nodes, which corresponds to a gap override value of —0.

Note that mesh refinement and quadratic elements reduce the
error in the measured overlaps but frequently a very high mesh
density would have to be used if gap override is not used.
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Eliminate penetration
INIPENE =0, TZPENE=0.0

Target surface /O/\
o

Contactor node

Continuum
Solution start, contactor node First solution time,
initially penetrates target surface overlap is eliminated

Eliminate penetration
over time period

INIPENE=0, TZPENE>0.0 INIPENE=2

N

—
Overlap\/

distance

Ignore penetration

‘o\\
o

Overlap is gradually eliminated First solution time,
overlap is recorded

Figure 4.4-4: Initial penetration options

Note also that the error in mesh based gaps and penetrations for
curved surfaces can be more significant when low precision
numbers are used for the node coordinates (such as when short
input file format is used). Gap override is also useful for such
cases.
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Two rings with a geometric overlap & (shrink fit)
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Figure 4.4-5: Significance of gap override for curved non-matched
geometries

¢ Contact surface extension

The target surface can be enlarged beyond its geometric bounds, so
that contactor nodes that slip outside the target can still be
considered in contact (via the EXTFAC parameter on the
BCTPARA card). This feature is useful where the edge of the
contactor and target surfaces coincide, as shown in Fig. 4.4-6. Each
target segment is enlarged by an amount equal to the contact
surface extension factor multiplied by the length of the segment.

e Contact surface compliance (Solution 601 only)

Contact surface compliance is set via the CFACTORI parameter
on the BCTPARA card and is only available with the constraint
function algorithm in Solution 601. Contact surfaces are commonly
assumed to be rigid meaning that no interpenetration is allowed.
This situation corresponds to a contact surface compliance of 0.0.
However, the contact surface compliance feature can be used to
simulate soft or compliant surfaces. The amount of allowed
interpenetration between the contacting surfaces in this case is
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Target
surface e = L x contact surface extension
L
&
Extended target
\ surface
o o o O©

Corner contactor node may slip
outside bounds of target due to
numerical round-off, or lateral
displacements

Figure 4.4-6: Contact requiring contact surface extension

penetration = &, x normal contact pressure (4.4-1)
where
normal contact pressure = normal contact force / contact area

The constraint function in the presence of a compliance factor is
modified as shown in Fig. 4.4-7. A is the contact area.

€,/A k
g

Figure 4.4-7: Constraint function for compliant contact
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¢ Consistent contact stiffness (Solution 601 only)
The consistent contact stiffness feature is set via the parameter
CSTIFF on the BCTPARA card. Changes in the direction of the
contact normal provide an additional contribution to the stiffness
matrix that is proportional to the value of the contact force and the
change in the normal direction. Therefore, higher convergence rates
(closer to quadratic) can sometimes be obtained by selecting the
consistent contact stiffness option which accounts for these
additional stiffness contributions. This results, however, in an
increase in the size of the stiffness matrix which is detrimental for
large problems. This option is more beneficial when discontinuous
contact normals are selected, because the derivation assumes that
the contact normals are discontinuous.

The consistent contact stiffness feature is not used when the
target surface is rigid.

Consistent contact stiffness is not used in dynamic analysis.

e Contact birth/death

The contact birth feature activates a contact set at a specific time,
while the contact death feature disables a contact set at a specific
time. They are set via the TBIRTH and TDEATH parameters on
the BCTPARA card. A 0.0 birth time means that the contact set
starts active at the beginning of the analysis, and a death time less
than or equal to the birth time means that the contact set does not
die.

e Friction delay (Solution 601 only)
When the friction delay feature is activated (FRICDLY parameter
in the BCTPARA entry), frictional conditions are applied to a
contactor node one time step after contact is established. This
feature can be useful in many problems, since it delays the non-
linearity associated with friction until contact is established.
Note that the relative sliding velocity cannot be uniquely
determined when a node was not in contact at time t, and is in
contact at time t+At. That velocity depends on the exact time at
which contact started, which is somewhere between times t and
t+At (see Fig. 4.4-8). Delaying friction is equivalent to assuming
that contact was established close to time t+At, and hence the
sliding velocity is zero and so is the frictional force.

Advanced Nonlinear Solution — Theory and Modeling Guide 213



Chapter 4: Contact conditions

Time =t
t+2At t+At
t
XI
t+2At t+At
T T X, = Relative sliding velocity
t+2At t+AL . . t+AL
N Fy Friction delay —» F,. =0
X2 ynique X,y non-unique

Figure 4.4-8: Friction delay feature

4.5 Friction

Advanced Nonlinear Solution has a general Coulomb type friction
model, where the coefficient of friction x can be a constant or
calculated based on several pre-defined friction laws. Solution 701
however, only supports standard Coulomb friction.

4.5.1 Basic friction model

By default, a constant coefficient friction is used. It is specified for
each contact pair via the BCTSET entry.

4.5.2 Pre-defined friction models (Solution 601 only)

One of the following predefined friction laws can be used instead
of constant Coulomb friction. The friction law and its input
parameters are set via the BCTPARA entry. The following
variables are used in the friction laws: the magnitude of the relative

sliding velocity u, the contact traction 7, the consistent contact

force F), the current nodal coordinates X, the direction of sliding v,

and the time ¢. The setting for the FRICMOD parameter required
for each friction law is given in parentheses. The 4, through A
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constants used in the predefined friction laws are set up via
FPARAI1 through FPARAS parameters in BCTPARA.

Constant coefficient of friction (FRICMOD = 1)
M= 4

Different static and dynamic friction coefficients
(FRICMOD = 4)

(4 ifi<4,
H2V4 ifis 4,

Friction coefficient varying with sliding velocity
(FRICMOD = 5)

A+ (4, - 4) ifi<A4,
H= 4,
A, ifii> 4,

Anisotropic friction model (FRICMOD = 6)

AV (Ao +( AV if > 4
4, ifu < 4

where v()), V(2 and v(3) are the x, y and z components of the sliding
direction.

Friction coefficient varying with consistent contact force

(FRICMOD = 7)

u=A4+A4F,6 0<u<l

Time varying friction model (FRICMOD = 8)
t .
A+—(4,-4) ift<A4,
H= 4,
A, ift> A4,
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¢ Coordinate-dependent friction model (FRICMOD = 9)

A+ AX )+ AX in 2D
= 0<u<4
H {Al 4 H= 4

A,x + A, in3D’

+AX o)+ AX)

Q)
e Friction model 1a (FRICMOD =2)

—_ 1 B exp(_AZT;z)
T,/ 4

e Friction model 1b (FRICMOD = 12)

_1-exp(-4,F,)
F,/4

e Friction model 2a (FRICMOD =3)

u=A4,+(4,— A4)exp(—4T),)
e Friction model 2b (FRICMOD = 13)

p=A4,+ (4, = 4)exp(=4F))

4.5.3 Frictional heat generation

The heat generation resulting from frictional contact can be
accounted for in a coupled TMC analysis. The user selects the
fractions of the generated heat going into the contactor and target
surfaces via the TMCFC and TMCFT parameters in the BCTPARA

entry. If these two fractions do not add up to 1.0 the remaining
portion is assumed to be lost.
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4.6 Contact analysis features

4.6.1 Dynamic contact/impact

For Solution 601

e Oscillations in velocities and accelerations can sometimes be
present in implicit dynamic contact analysis especially for high
speed impact problems. These oscillations can be reduced by

- applying post-impact corrections,

- setting the Newmark parameter o= 0.5,

- adding compliance to the contact surfaces,

- using the Bathe composite time integration method.

e In post-impact corrections, the velocities and accelerations of
the contactor and target can be forced to be compatible during
contact (only in the normal contact direction). This feature is
activated by setting IMPACT =1 in the NXSTRAT entry. This is
achieved by modifying the velocities and accelerations of the
contact nodes once convergence is reached such that they satisty
conservation of linear and angular momentum.

The post-impact correction option requires additional memory
and computations.

The post-impact correction feature should not be used together
with compliant contact surfaces, since the velocities and
accelerations of the contactor and target surfaces are no longer
expected to be identical.

If post-impact correction is activated, all target nodes, except
those with all degrees of freedom fixed or enforced displacements,
must have a positive non-zero mass. The contactor nodes can have
Zero mass.

¢ Setting the Newmark o = 0.5 instead of the default o= 0.25
(trapezoidal rule — see Section 6.3) results in an accurate solution
of rigid body impact problems, and frequently has a positive effect
on reducing numerical oscillations in flexible body contact. This
feature can be activated by setting IMPACT = 2 in the NXSTRAT
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entry, or by changing ALPHA to 0.5 also in the NXSTRAT entry.
It is, however, recommended that the Bathe composite method be
used instead, whenever possible.

¢ Adding compliance to the contact surface can also significantly
reduce the numerical oscillations that result from dynamic time
integration. This is done by setting a non-zero CFACTORI1 in the
BCTPARA entry. In this case, the compliance factor must be
selected based on Eq. (4.4-1) such that the contact pressures do not
cause excessive penetration. Allowing penetration of the order of
1% of the element size usually eliminates numerical oscillations.

e The Bathe composite time integration method provides some
numerical damping to the high frequency content of the solution,
which includes the contact oscillations.

For Solution 701

e Oscillations in velocities and accelerations can sometimes be
present in explicit dynamic contact analysis especially for high
speed impact problems. These oscillations are more common with
the penalty contact algorithm. In that case, they can be reduced by

- reducing the normal penalty stiffness,
- adding penalty contact damping.

See Section 4.3.2 for details on the explicit penalty contact
algorithm.

In addition, other sources of damping such as Rayleigh damping
can reduce contact oscillations by damping the high frequency
modes that generate them.

¢ Oscillations in results can also occur when using the kinematic
constraint algorithm. These oscillations can be due to a mismatch
in the masses of the two contacting surfaces. See section 4.7.3 for
more details.
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4.6.2 Contact detection

e As explained earlier in this chapter, the contact conditions
prevent the contactor nodes from penetrating the target segments.
During each equilibrium iteration, the most current geometry of the
contactor and target surfaces is used to determine and eliminate the
overlap at the contactor nodes.

e For single-sided contact, the calculation of overlap at a
contactor node k consists of a contact search, followed by a
penetration calculation. The contact search starts by identifying all
possible target surfaces where node & can come into contact. For
each of these target surfaces:

- Find the closest target node » to node £.
- Find all the target segments attached to node n.

- Determine if node k is in contact with any of these
segments.

- Ifnode £k is in contact, update the information.

- If the new contact surfaces are used, and no appropriate
target segment is detected, the contact search is
expanded beyond the target segments attached to node
n.

e For double-sided contact, the contact search algorithm uses time
tracking and checks whether the contactor node penetrated a target
segment between times ¢ and ¢ + At.

4.6.3 Suppression of contact oscillations (Solution 601)

¢ In some problems contactor nodes may oscillate during
equilibrium iterations between several (usually two) neighboring
target segments. Frequently, both solutions are acceptable. A
special procedure can be used to prevent such oscillations. This is
done by selecting a non-zero NSUPP parameter in the NXSTRAT
entry. In this case, the program records the pairing target segment
for each contactor node in the previous NSUPP iterations. Once
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this array is full, and the contactor node is still in contact, and the
pairing target segment is one of those recorded in previous
iterations, the suppression feature is activated. The contactor node
from this iteration onwards is associated with only that target
segment. It may remain in contact with the segment, or in contact
with an infinite plane passing through the segment, or it can
separate from contact completely. The node is released from its
restrictions once iteration ceases, either because convergence is
reached, or due to non-convergence.

o If this oscillation suppression feature is used, it is recommended
that NSUPP be set greater or equal to 5 and at least 5 less than the
maximum number of iterations.

¢ Note that there is memory overhead associated with this feature,
where an integer array of size NSUPP is defined for all contactor
nodes.

4.6.4 Restart with contact

¢ Changes in contact parameters are allowed between restarts,
with some exceptions. Some restrictions exist, such as no restart
from friction to frictionless and vice versa.

e The contact algorithm itself for a certain contact set can also
change in a restart. For this purpose, the contact algorithms can be
divided into two categories. The first category includes the
constraint function (implicit), Lagrange multiplier segment
(implicit), kinematic constraint (explicit), and penalty (explicit).
Restarts are possible between different algorithms in this category.
The second category includes the implicit and explicit Rigid Target
algorithms. Restarts are possible between these algorithms.
However, restarts are not allowed between the two categories.

4.6.5 Contact damping

e The contact damping feature allows the user to add normal and
tangential grounded viscous dampers to all contactor and target
nodes in the model. The damping is activated via the CTDAMP
parameter in NXSTRAT, and the normal and tangential damping
coefficients are CTDAMPN and CTDAMPT. Using the same value
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for both normal and tangential direction results in isotropic viscous
damping. The damping force on each node is

FDamp =Cyuy + G,
e This damping can be useful in static problems for stabilizing the
model especially when there are insufficient boundary conditions to
remove rigid body modes. It can also be useful in dynamic analysis
to dampen out high frequency numerical oscillations. The damping
can be set to act only at the initial time step, or to be constant
throughout the analysis.

¢ Using the initial damping option, the damping will be active at
the beginning of the first time step, and will be reduced gradually
(between iterations) until it fully dies out by the end of the first
time step. Thus the final solution at the first time step will be free
of any damping. Note that if contact is not established and nothing
else stabilizes the model, the program will not converge and will
give an appropriate warning message.

¢ Constant damping remains active throughout the analysis. In
this case, the program outputs the sum of all damping forces in the
output file, and the user must check that these forces are
significantly smaller than the sum of the reaction forces (also
written to the output file).

See Section 4.7.6 for modeling hints on using contact damping
to handle improperly supported structures and how to choose the
damping constants.

4.7 Modeling considerations

4.7.1 Contactor and target selection

¢ For some contact problems, the contactor and target surfaces in
a contact pair can be interchanged without much effect on the
solution. However, for many cases, one of the two alternatives is
better.

e If it is more important for the nodes of one surface not to
penetrate the other, then that surface should be the contactor. This
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factor is usually important when one surface has a much coarser
mesh than the other as shown in Fig. 4.7-1. The coarse surface
should preferably be the target in this case. A related condition
occurs around corners or edges as shown in Fig. 4.7-2. The upper
surface should preferably be the contactor in this case.

e If one of the surfaces has mostly dependent degrees of freedom,
it should be the target. This dependency can be due to boundary
conditions, constraints or rigid elements. The surface can also be
rigid if its nodes are not attached to any elements. In that case too it
has to be the target (except in the explicit penalty algorithm where
this is permitted).

o If one surface is significantly stiffer than the other, it should
preferably be the target, unless one of the two conditions above
also exist.

Body 1 (contactor)

Body 2 (target)

AN

Target segments

Contactor nodes

Figure 4.7-1: Effect of incorrect contactor-target selection due to
mesh density
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Contactor
surface

o < /a
\

Target
surface

Figure 4.7-2: Target selection for surfaces of different sizes

4.7.2 General modeling hints

e Advanced Nonlinear Solution automatically defines the
direction of the contact surfaces on the faces of solid elements
(defined using the BSURFS or BCPROPS entries in 3-D or
BLSEG entry in 2-D). For target contact surfaces defined on shells
(using the BSURF or BCPROP entries) the user has to ensure that
the correct direction is defined using the BCRPARA entry (except
when double-sided contact is used).

¢ In some cases, even though the contact surface is on the faces of
3D solid elements, it is more convenient to define the surface using
shell elements. In this case, fictitious shell elements should be
defined and referenced in the BSURF or BCPROP entries, and
TYPE should be set to COATING in BCRPARA. The program
will automatically transfer the contact surface to the underlying
solid elements and delete the fictitious shell elements.

¢ Rigid target surfaces can be modeled using nodes with no
degrees of freedom or nodes with enforced displacements for all
active degrees of freedom. As a result, a fine discretization of a
complex rigid surface geometry is possible with only a small
increase in the solution cost.
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e The commands for 3-D contact surface definition all require the
contact surface nodes to be connected with 3-D solid or shell
elements. Therefore, to model a rigid target, dummy shell elements
should be used to define the surface. These shell elements are
removed from the model if they are found to be attached to a rigid
contact surface. A contact surface is deemed rigid if:

» it is the target of a contact pair in a contact set using the rigid
target algorithm, or

» the TYPE flag in the BCRPARA entry is set to RIGID.

e Ifthe contact surface is rigid the MGP parameter in the
BCRPARA command can also be used to define a master node that
will control the motion of the rigid surface. Internally, rigid links
are created between the master node and all the nodes on the rigid
target.

e In general it is recommended that the lengths of segments on the
contactor and target surfaces be approximately equal. This is
particularly important if multiple contact surface pairs are
considered in the analysis or if the contact surface geometries are
complex.

e Ifrequired, a contactor surface can be modeled as almost rigid
by choosing a reasonably high Young's modulus for the finite
elements modeling the contactor surface. However, the stiffness of
the surface elements should not be excessively high and make the
model ill-conditioned.

o If'the degrees of freedom of a node on a contactor surface are
used in constraint equations or attached to a rigid element (see
Section 5.8), the contactor node degrees of freedom should
preferably be independent.

e If a contactor node has all of its translational degrees of freedom
dependent, the node is dropped from the contact surface.

e Ifthe contact surfaces are smooth (i.e., the coefficient of friction
is small), the frictionless model is recommended as it is less costly
to use. It is also recommended that prior to any contact analysis
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involving friction, the frictionless solution is first obtained,
whenever possible.

¢ It is not recommended that contact pairs with friction coexist
with contact pairs without friction in the same contact set.

¢ A contactor node should preferably not belong to more than one
contact surface in a contact set, otherwise the contactor node may
be over-constrained.

e For problems in which the contactor and target surfaces are
initially relatively close to each other and no significant sliding
between these surfaces is expected throughout the analysis, the
small displacement contact feature may be used. The analysis will
be faster in this case, since the relatively time consuming contact
search is only performed once, and convergence difficulties
associated with a contactor node oscillating between one target to
another are eliminated. It is the user’s responsibility however, to
make sure that the problem is suitable for small displacement
contact.

e The friction delay feature can sometimes lead to better
convergence since friction will only act once a converged contact
solution is established. This feature is also very useful for many
problems involving initial penetrations. In this case, the first time
step during which these initial penetrations are removed will be
frictionless.

e Restarting from frictionless contact to contact with friction and
vice versa is not possible. However, it can be done if the
frictionless analysis is replaced by a frictional analysis with a very
small friction coefficient.

e Ignoring initial penetrations is a useful option when these
penetrations are just a product of the finite element discretization,
meaning that they do not exist in the physical model. Fig. 4.7-3
illustrates one such case involving contact between concentric
cylinders. In this situation, if initial penetrations are eliminated, the
contact algorithm will try to push the penetrating contactor nodes to
the target surface segments in the first step, creating initial
prestressing. These initial penetrations and any prestressing that
they might cause are unrealistic. [gnoring them is useful in this
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case. Note however, that if either cylinder is significantly rotated
the initial penetrations calculated at each contactor node (in the
initial configuration) will no longer be valid. In this case, the best
alternative would be to use a much finer mesh.

Outer cylinder

Inner cylinder

Contactor surface,

marked with O ‘
}.
\ Geometry before

discretization

Target surface,
marked with e

Overlap to ignore

Figure 4.7-3: Analysis of contact between concentric cylinders,
initial penetration is ignored

e When higher order elements are used in contact, specifically the
10-node tetrahedral and the 20-node brick elements, tensile
consistent nodal contact forces can develop even when the
underlying contact tractions are compressive. The program can
accept such tensile forces as if they are compressive. This is done
via the TNSLCEF flag in NXSTRAT. Accepting these tensile forces
gives more uniform results for problems involving the above
mentioned elements. However, it may slow down or even prevent
convergence in other problems. It is off by default.
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4.7.3 Modeling hints specific to Solution 601

e It is recommended that the ATS method be used in contact
analysis (see Section 6.2.4). It can also be effective to use the low-
speed dynamics option of the ATS method (ATSLOWS parameter
of the NXSTRAT entry).

e Line search can sometimes be beneficial for contact problems.

o Frictional contact problems using the constraint function
algorithm can be sensitive to the choice of frictional regularization
constant (EPST parameter in BCTPARA entry). For most
problems, this parameter should be one or two orders of magnitude
smaller than the expected sliding velocity. Using an excessively
large value leads to a smoother friction law, which generally
converges faster but results in smaller frictional forces or more
sliding. Using an excessively small value enforces the Coulomb
law more accurately but is more likely to experience convergence
difficulties.

e Friction is not regularized or smoothed in the Lagrange
multiplier segment algorithm. This results in accurate enforcement
of stick and slip, but is more likely to experience convergence
difficulties.

e Geometric and material nonlinearities can highly depend on the
sequence of load application. Thus, for problems involving such
features, the load steps should be small. The time step A¢ should
also be small in dynamic analysis and when time dependent
material constitutive relations (e.g., creep) are used.

o Ifrigid elements are connected to contact surface nodes, the
flexible option can be used. In this case, the rigid element does not
create any dependent degrees of freedom. This feature is activated
via the EQRBAR and EQRBE?2 flags in the NXSTRAT entry.
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e If a contact surface with corners or edges is modeled with
continuous contact normals, the normal vectors may be inaccurate
as shown in Fig. 4.7-4(a). In this case, switch to discontinuous
normals, use different contact surfaces for each smooth part

(Fig. 4.7-4(b)) or use a fine mesh close to the corners or edges
(Fig. 4.7-4(c)).

Contact surface
with sharp corners ~- —
/ \ ¢ Contact surface 1
[T
N

-]
N

Arrows correspond to normal a) Single contact surface
vectors pointing to exterior side

Contact

Contact surface 3
surface 1 \ Contact surface 1
-1 — I (with fine —

! corner mesh)

Contact surface 2 - [
-] - L ) 4
o T T

b) Three separate contact surfaces ¢) Single contact surfaces with

fine mesh at corners

Figure 4.7-4: Defining contact surfaces (with continuous normal
vectors) in the presence of corners
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4.7.4 Modeling hints specific to Solution 701

o The penalty algorithm is preferred when both surfaces are rigid
or have many fixed or prescribed nodes.

e Large oscillations in the contact forces may occur when using
the penalty method even though the model is stable. These can be
reduced by reducing adding a penalty damping term and/or
reducing the penalty stiffness.

e When using the penalty contact algorithm it is important to
check that the contact stiffnesses are properly selected. Unduly
small penalty stiffnesses will lead to excessive penetrations, while
unduly large penalty stiffnesses will lead to excessive oscillations
or unstable time integration.

e Large mismatches between the masses of contacting surfaces
should be avoided when using the kinematic constraint method.
This mismatch is common when contact involves a rigid surface
with a small mass and an applied force, as shown in Fig. 4.7-5. The
best solution in such cases is to minimize the mismatch by
increasing the mass of the rigid surface.

The inaccuracy in this case results from the way the contact is
enforced. The kinematic constraint method first predicts
displacements without contact then applies a contact correction.
The contact conditions are satisfied more accurately when the
penetrations in the predicted configuration are small which is
usually the case due to the small time step size of explicit analysis.
However, some cases such as that mentioned above lead to large
projected penetrations which results in incorrect contact conditions
and tensile contact forces.

o Large mismatches between the masses of contacting surfaces
can also lead to problems when using the penalty method. In this
case, the normal penalty stiffness required to avoid instability
(without reducing the time step) can be unduly small leading to
excessive penetrations. The best solution in such cases is to
minimize the mismatch by increasing the mass of the rigid surface,
or increase the penalty stiffness by setting it manually or by
reducing the time step.
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F Small mass assigned to rigid surface

v

One node
in contact

Original configuration Correct solution

Tensile forces

N

-

‘Wrong contact

region

Projected configuration
(before contact correction)

Final configuration

Figure 4.7-5: Performance of kinematic contact algorithm when
contact surfaces have a large mass mismatch

4.7.5 Convergence considerations (Solution 601 only)

e  When Solution 601 fails to converge during the incremental
analysis, the intermediate printout given by Solution 601 in the
output listing can provide some useful information (see Fig. 4.7-6).

¢ Three non-contact related norms are given: first, the energy
convergence criterion, the displacement and rotation convergence
criterion (boxes b and c), and the force and moment convergence
criterion (boxes d and e). Each box has 3 lines of output with the
top one giving the norm of the quantity, the second one giving the
equation number corresponding to the maximum value, and the
third line giving the maximum value. See Chapter 6 for definitions
and more details on these norms.
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OUT-OF- NORM OF
BALANCE OUT-OF-BALANCE NORM OF INCREMENTAL
ENERGY FORCE MOMENT DISP. ROTN. CFORCE

NODE-DOF NODE-DOF NODE-DOF NODE-DOF CFNORM
MAX VALUE| [MAX VALUE| |[MAX VALUE| [MAX VALUE

boxb boxc boxd boxe boxf

ITE= 0 1.14E+00 1.41E+02 9.99E-17 5.35E-02 5.12E-02 1.27E-15 ...
36-2 35-X 31-2 31-X 0.00E+00 ..
-1.00E+02 4.71E-17 -5.68E-03 -3.30E-02

ITE= 1 -1.29E-03 2.56E+01 1.92E-04 1.56E-02 2.45E-01 2.65E+03 ...
121-z 31-X 64-2 34-X 1.27E-15 ...

-9.85E+00 -1.06E-04 5.07E-03 1.26E-01
ITE= 2 3.32E-04 2.51E+01 1.88E-04 1.80E-02 1.77E-01 1.95E+03 ...
117-2 31-X 64-2 32-X 5.08E+01 ..

-9.66E+00 -1.04E-04 4.97E-03 -9.02E-02
ITE= 3 7.69E-02 4.46E+02 8.18E-04 1.04E-03 1.17E-02 1.95E+03 ...
64-7 34-X 120-2 33-X 2.00E+03 ...

w

.21E+02 5.15E-04 -1.33E-04 -7.92E-03

. CONVERGENCE RATIOS CONVERGENCE RATIOS OUT-OF-BALANCE LOAD

. FOR OUT-OF-BALANCE FOR INCREMENTAL VECTOR CALCULATION
ENERGY FORCE DISP. CFORCE BETA RATIO
MOMENT ROTN. (ITERNS)
COMPARE WITH COMPARE WITH
ETOL RTOL DTOL RCTOL

1.00E-03 1.00E-02 (NOT USED) 5.00E-02

1.00E+00 1.41E401 0.00E+00 1.27E-05

9.99E-17 0.00E+00
-1.00E+02 4.71E-17 -5.68E-03 -3.30E-02

-9.69E-03 2.56E+00 0.00E+00 2.65E+05 1.00E+00 -5.54E-02
1.92E-04 0.00E+00 (1)

2.49E-03 2.51E+00 0.00E+00 3.85E+01 1.92E-02 5.08E-03
1.88E-04 0.00E+00 (9

5.76E-01 4.46E+01 0.00E+00 9.77E-01 1.00E+00 3.94E+03
8.18E-04 0.00E+00 (2)

Figure 4.7-6: Solution 601 output listing of convergence criteria
during equilibrium iterations

e Box fof Fig. 4.7-6 shows the contact related norms. Parameter
CFORCE indicates the norm of the change in the contact forces
(between two iterations), and parameter CFNORM gives the norm
of the contact force vector.
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e The following additional convergence criterion is used when
contact is present:

CFORCE <RCTOL
max(CFNORM,RCONSM)

where RCTOL is the contact force convergence tolerance and
RCONSM is the reference contact force to prevent possible
division by zero in the contact convergence criterion above.
RCONSM and RCTOL are set in the NXSTRAT entry.

e When the maximum number of iterations is reached without
convergence, and all norms are decreasing, the maximum number
of iterations should be increased.

e When the norms are rapidly changing before convergence fails,
it is commonly caused by applying the load too quickly or using a
large time step.

e When CFNORM is stable but CFORCE changes rapidly during
equilibrium iterations, the contact can be oscillating between 2 or
more close solutions. In this case, try to change the time stepping,
or turn on the suppression of contact oscillations feature. When
CFNORM varies rapidly, usually the other three norms also vary.

4.7.6 Handling improperly supported bodies

Many static problems depend on contact to provide the boundary
conditions necessary for a stable problem (one in which there are
no rigid body modes). Some examples are shown in Fig. 4.7-7.

F
; Applied Blankholder
7Contact pair 1 ¢ load pressure
‘ bbby
| N ‘
5 | Fixed die
Contact  Contact g
pair 2 pair 3 £
w2

Figure 4.7-7: Examples of improperly supported bodies
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In such cases, the stiffness matrix is singular if the contact
constraints are inactive. Even if the constraints are active the
stiffness matrix is still not positive definite. The problem is more
serious if natural boundary conditions are applied (forces,
moments, or pressure). Weak springs can be added by the user to
make the model stable. However, the selection of appropriate
locations and stiffnesses for such springs may not be feasible.
Some models may be better suited for a dynamic or the low-speed
dynamics feature. However, in many cases, this too is not a feasible
option. Therefore, several other modeling techniques are available
in Solution 601 to handle such problems. These are stiffness
stabilization, contact damping and limiting incremental
displacements. These techniques can be used separately or
combined in the same model.

Stiffness stabilization (see Section 10.6 for details).

This feature provides a stabilizing effect by scaling all diagonal
stiffness terms without affecting the right-hand-side load vector.
The outcome of each iteration will be affected, but the final
converged solution will not be (within the bounds of the
convergence tolerances). Since the stabilization constant in non-
dimensional, it should always be a small number. Typical values
are between 10™'* and 10”.

Contact damping (see Section 4.6.5 for details).

Contact damping adds grounded viscous dampers to all contactor
and target nodes. Setting the damping to be only at the initial time
step is sufficient for some problems such as those in Fig. 4.7-7.
When the first time step converges contact must be established and
damping will have been removed. This way, the converged solution
will be free of any contact damping. Other problems however,
require the damping to be constantly present. In this case, the
program outputs the damping forces at every time step. These
forces should be compared with the reactions in order to ensure that
damping is not excessive.

The damping constants have units of force per unit velocity.
Hence, their proper value is problem dependent. If initial contact
damping is used to stabilize a problem involving two contact
bodies at least one of which is unsupported, and with a gap
between them, then a good estimate of the damping constants Cy
and Cr is one in which the gap is nearly closed in the first iteration.
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Starting with the dynamic equations of motion (see Equation 6.3-1)
and canceling out the inertial term (static analysis), and the
stiffness term (since one or both bodies are initially unsupported),
we obtain

C U=R

where C is the total damping matrix, which in this case is diagonal,
and R is the applied load vector. We can assume the normal and
tangential damping constants to be equal, the total damping
contribution to be the damping constant times the number of
contact nodes on the unsupported contact surface N (the top
circular body in the example in Fig. 4.7-7), and the velocity to be
approximately equal to the minimum initial gap between the two
bodies, g, divided by the time step size At. This leads to the
following value of the damping constants

RAt
Cy=C, =——
Ng
where R is the sum of the applied loads at the first time step.
Note that this is only an estimate, but is frequently an acceptable
one.

Limiting maximum incremental displacement (see Section 6.2.1
for details).
Limiting the maximum incremental displacement per iteration is
useful when a load is applied to a body that is not initially in
contact. The model at that stage is unstable and even when stiffness
stabilization or viscous damping is used, the initial displacement
can be excessive leading the program away from the converged
solution, and thus making the return to the proper solution difficult.
Setting the limiting displacement to about the element length size
in this case would scale down the potentially huge displacement in
the first iteration so that the results remain close to the converged
solution.

Note that this feature does not stabilize the stiffness matrix, so
in many cases it may be necessary to use it together with stiffness
stabilization or viscous contact damping or both.
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4.8 Rigid target contact algorithm

4.8.1 Introduction

o The rigid target contact algorithm is intended for use in
applications in which the target surfaces are considered to be rigid.
It is only available for 3-D contact.

Fig. 4.8-1 shows a typical application in metal forming.

e A target surface can either be stationary, can translate as a rigid
body or can rotate as a rigid body.

e Contact can be frictionless or can include Coulomb friction.

o The rigid target contact algorithm is completely revised in
Advanced Nonlinear Solution of NX 5. However the rigid target
contact algorithm in Advanced Nonlinear Solution of NX 4 is
retained in Advanced Nonlinear Solution for backwards
compatibility. The revised rigid target contact algorithm of NX 5 is
the default.

Throughout this section, the rigid target contact algorithm in
Advanced Nonlinear Solution of NX 4 is referred to as the “NX4”
rigid target contact algorithm. This section does not describe the
NX4 rigid target contact algorithm; for information on the NX4
rigid target contact algorithm, see the NX Nastran 4 Advanced
Nonlinear Theory and Modeling Guide.

Models that were set up using the NX4 rigid target contact
algorithm may need to be revised when using the current rigid
target contact algorithm, see the conversion hints in Section 4.8.7.
We suggest that new models not be set up using the NX4 rigid
target contact algorithm.

e Itis also possible to solve many problems involving rigid
targets using the constraint function and segment contact
algorithms described earlier in this chapter. However, the rigid
target contact algorithm described here is frequently more
effective, because the rigid target contact algorithm uses the
assumption of rigid targets to simplify the contact searching.
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Prescribed punch

displacement
Blank holder force
l Punch l
Blank holder
Blank
Die
a) Physical problem
Contact
surface Contact
4 (target) surface 2
(target)
/ Contact
Contact surface 3
surface 1 (target)
(contactor),

offsets used
to model blank
thickness

b) Modeling with contact surfaces

Figure 4.8-1: Sample metal forming analysis using the rigid-target
contact algorithm
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4.8.2 Basic concepts
4.8.2.1 Contactor surfaces

Similar to the other contact algorithms in Advanced Nonlinear
Solution, the contact surfaces are organized into contact sets. Each
contact surface consists of 3- or 4-node contact segments. A
contact pair consists of a contactor surface and a target surface. In
the rigid target algorithm, it is allowed for a contactor surface to be
in contact with more than one target surface simultaneously.

Contactor surface: The contactor surface definition includes the
possibility of offsets.

When there are no offsets specified, the contactor surface is
described entirely by the contactor nodes. (Fig. 4.8-2(a)).

Contact Contact
segment 1 segment 2

Segment normals

a) Contactor segments without offsets. Segment normals are not used.

Radius of sphere
Upper surface = contactor offset

Lower surface

b) Contactor segments with spherical offsets. Segment normals are not used.

Figure 4.8-2: Contactor segments
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When there are offsets specified, the offsets can either be
described using spheres centered around the contactor nodes (Fig.
4.8-2(b)), or using the contactor normals (Fig. 4.8-2(c)). In either
case, the offset magnitude is either constant or taken from the
current thickness of attached shell elements, as described below.

Upper contactor point
- pp p

Contactor
node normal

Lower contactor point

Contactor node normal = average of all segment normals
Offset vector = contactor node normal x offset magnitude

¢) Contactor segments with offsets, normals used to describe offsets

Figure 4.8-2: Contactor segments (continued)

When the offsets are described using the contactor normals,
offset vectors are constructed using the averaged contactor normals
and the offset magnitude. The upper and lower contactor points are
constructed from the contactor nodes and the offset vectors.

When the target surface is concave, it is possible for the contact
situation to be similar to the one shown in Fig. 4.8-3. In this case,
when the offsets are described using spheres, the center contactor
node cannot be in contact with both target segments at once, hence
the center contactor node will oscillate between them. The center
contactor node cannot be in contact with target edge 1 since edge 1
is farther away than either of the target segments. Equilibrium
iterations in static and implicit dynamic analysis will not converge,
because of the oscillation. However contact is correctly modeled
when the offsets are described using normals, because the center
contactor node can be in contact with target edge 1.
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Contactor and target surfaces viewed from the side
for ease of visualization.

This contactor node cannot be in contact I contact with target segment 2
with both target segments at the same time.

In contact with target segment 1 Spherical offset

Contactor surface

a) Spherical offsets, contact incorrectly modeled

. In contact with target segment 2
In contact with target segment 1

®  In contact with target edge 1 \

Target edge 1

b) Normals offsets, contact correctly modeled

Figure 4.8-3: Concave target surface, contactor surface with offsets
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4.8.2.2

4.8.2.3

Target surfaces

Each target surface is either stationary, or can rigidly move
(translate, rotate or a combination of translations and rotations).

Determination of contact between contactor and target

No contactor offsets: 1t is allowed for a contactor node to be in
contact with a target segment, target edge or target node. The
program searches for the target segment, edge or node for which
the absolute value of the distance d between the contactor node and
the target segment, edge or node is minimized, where the distance
is measured in the direction opposite to the target normal (Fig. 4.8-
4). A positive distance corresponds to a geometric gap; a negative
distance corresponds to geometric overlap.

Notice that, for interaction between a contactor node and target
edge, or between a contactor node and target node, the normal
direction is taken from the line segment connecting the contactor
node and the target, as shown in Fig. 4.8-4.

Contactor node

Target segment .~
o Closest point on
] target segment

Target segment normal

a) Interaction between contactor node and target segment

Figure 4.8-4: Interaction between contactor node and target surface
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Contactor node
°

Target edge

Closest point on
target edge

b) Interaction between contactor node and target edge

Contactor node
°

Target node .

n

¢) Interaction between contactor node and target node

Figure 4.8-4: Interaction between contactor node and target surface
(continued)

Fig 4.8-5 shows two target segments with a common target
edge. The shaded volumes indicate which of the target entities any
contactor node is closest to. Notice that the shaded volume in
which the contactor node is closest to the target edge depends upon
the angles between the target segments attached to the edge.
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Contactor node in this shaded volume
Contactor node in this shaded volume is closest to edge 1.

is closest to segment 1.

Contactor node in this shaded volume
is closest to segment 2.

Figure 4.8-5: Interaction of contactor node with target segments and edges

Once the target segment, edge or node is determined, then the
contact gap is computed using

g =d —GAPBIAS

where GAPBIAS can be chosen to, for example, not model contact
even if there is geometric overlap. (The default for GAPBIAS is 0.)

If the corresponding gap is negative, and less than DEPTH, then
contact occurs, in other words —DEPTH < g <0 is the contact
condition. DEPTH can be chosen to limit the depth of the target
surface, exactly as in the other contact algorithms.
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Contactor offsets described using spheres: In this case, the
distance d is determined exactly as if there are no offsets. Then the
contact gap is computed using

g =d —OFFSET - GAPBIAS

where OFFSET is the offset magnitude. The process is illustrated
for interaction between a contactor node and target segment,
assuming that GAPBIAS = 0 (Fig. 4.8-6). The same idea is used for
interaction between a contactor node and target edge or node.

Contactor node
N OFFSET

d
RN |
| e

t d - OFFSET

Target segment .~
o Closest point on
W target segment

n

Figure 4.8-6: Interaction between contactor node and target segment,
spherical offsets

Contactor offsets described using normals: In this case, contact is
detected using the upper and lower contactor points instead of the
contactor nodes.

Oscillation checking: The search for the nearest target segment,
edge or node is performed every equilibrium iteration in Solution
601. During the equilibrium iterations, it is possible for the
contactor node to move in such a way as to be alternately in contact
with two neighboring segments. This is especially true if the target
surface is concave. When the contactor node oscillates between two
neighboring segments, the solution cannot converge unless
oscillation checking is turned on. When oscillation checking is
turned on, then, when oscillation is detected between two
neighboring segments, the contactor node is placed into contact
with the shared target edge. In many cases, this procedure allows
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the iterations to converge, if in fact the contactor node “should”
have been in contact with the shared target edge.

Oscillation checking only forces the contact between the
contactor node and shared target edge for the current equilibrium
iteration. For the successive equilibrium iterations, the contactor
node is always in contact with the nearest target segment, edge or
node. So oscillation checking cannot force contact to the “wrong”
target segment, edge or node in a converged solution.

Contact normal force: The normal force corresponding to contact
is computed as F, =—k, g where the normal force acts in the
direction opposite to the target normal direction (Fig. 4.8-7). k, is

the contact normal stiffness, entered as a parameter (see Section
4.8.3 for hints about choosing &, ). k, can be considered to be a

penalty parameter.

Slope -k,

-DEPTH \ g
\
\
\
Tensile contact curve

Figure 4.8-7: Normal contact force vs. gap

Tensile contact: During equilibrium iterations in Solution 601, a
node can temporarily be in “tensile contact”. The basic ideas for
tensile contact are illustrated in Figures 4.8-8 to 4.8-10.
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Spring is compressed

Contactor node Spring is uncompressed
i ; :
Target segment ?
a) Iteration ite-2, b) Iteration ite-1, ¢) Iteration ite,
contact force F,,_ , no contact force contact force F,
is compressive is large and compressive

Figure 4.8-8: Iterations when tensile contact is not used

Fig. 4.8-8 shows the iteration history when tensile contact is not
used. For iteration ite-2, the contactor node and target segment
overlap. Hence contact is assumed between the contactor node and
target segment. For iteration ite-1, because of the relative motion of
the contactor node and target segment, the contactor node and
target segment do not overlap. For this iteration, no contact is
assumed between the contactor node and target segment. For
iteration ite, there is a large overlap because the contactor spring
unloads, since there are no forces acting on the contactor spring,
and the target does not provide any stiffness to the contactor node.
This large overlap causes large contact forces, which can cause
trouble in convergence in the successive iterations.

Fig. 4.8-9 shows the iteration history when tensile contact is
used. Now, in iteration ite-1, tensile contact is assumed between the
contactor node and target segment. In tensile contact; the target
surface still provides stiffness to the contactor node. Hence the
overlap in iteration ite is small.

Contactor node

i : :

Target segment

a) Iteration ite-2, b) Iteration ite-1, c) Iteration ite,
contact force F; , contact force F,,_ | contact force F,
is compressive is tensile is compressive

Figure 4.8-9: Iterations when tensile contact is used
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Fig.4.8-10 shows the iteration history when tensile contact is
used, and the gap is large. In iteration ite-1, tensile contact is
assumed, and in iteration ite, no contact is assumed.

Contactor node

i i

Target segment

a) Iteration ite-2, b) Iteration ite-1, ¢) Iteration ite,
contact force F,, _ , contact force F,_ | no contact force
is compressive is tensile

Figure 4.8-10: Iterations when tensile contact is used, converged solution not in contact

4.8.2.4

It is seen that tensile contact speeds up the convergence when
the converged solution is in contact, and slows down the
convergence when the converged solution is not in contact.

It is not permitted for a solution in which tensile contact is
present to converge, unless the tensile forces are all less than the
value of a user-input parameter (see Section 4.8.3). Hence the
tensile contact feature does not affect the converged solution.

Frictional contact

The friction force is calculated using the relative sliding velocity
between the target and contactor. The relative sliding velocity U,

is calculated from the velocities of the contactor and target using
u, =(u, -, )-((i,-u,)n)n

where u, is the velocity of the contactor node, u, is the velocity

of the target and n is the target normal.

In static analysis, the contactor and target velocities are
calculated using the nodal incremental displacements divided by
the time step. In dynamic analysis, the contactor and target
velocities are taken from the nodal velocities.
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The friction force magnitude is computed using

i |
7 =Ll
ufmin

uf || < ufmin

:lL[F,

u, ” Z U iy

where F| is the normal contact force and x is the Coulomb

n

friction constant (Fig. 4.8-11). #, ;. is the minimum sliding

velocity, entered as a parameter (see Section 4.8.3 for hints about
choosing #, ;. ). The direction of the friction force is always

opposite to U, .

F 1
Mn Sliding

+—uk,
Sliding Sticking

Figure 4.8-11: Friction force vs. velocity

When ”u f” <u min» the friction is sticking, otherwise the friction is

sliding.

Oscillation checking with friction: During equilibrium iterations in
Solution 601, it is possible for the contactor node to undergo
“sliding reversals”. Namely, the contactor node slides in one
direction for an equilibrium iteration, then reverses sliding
direction for the next equilibrium iteration. When sliding reversals
occur, the solution cannot converge unless oscillation checking is
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turned on. When oscillation checking is turned on, then, when
sliding reversals are detected, the contactor node is placed into
sticking contact, even if the sticking force is larger than the sliding
force, and convergence is prevented for the current equilibrium
iteration.

Oscillation checking only forces sticking friction for the current
equilibrium iteration. For successive equilibrium iterations, the
frictional state (sliding or sticking) is determined as usual from the
sliding and sticking forces. So oscillation checking cannot
converge to a solution in which the frictional state is wrong.

4.8.3 Modeling considerations

Selection of rigid target contact: For Solution 601, set TYPE=2 on
the BCTPARA card. For Solution 701, set XTYPE=3 on the
BCTPARA card.

Algorithm used: The current rigid target contact algorithm is
selected by default. To select the NX4 rigid target contact
algorithm, set RTALG=1 on the NXSTRAT card.

Modeling of target surfaces: 1f the target surface translates or
rotates, all of the nodes on the target surface must be connected to a
“master node”, either using constraint equations or using rigid
links. For example, in Fig. 4.8-12, all of the nodes on the lower
target surface are connected to a master node using rigid links.

It is not allowed for the nodes on a target surface to have
independent degrees of freedom. All degrees of freedom for the
nodes on a target surface must be fixed or constrained.

The amount and description of offset is determined by the
BCTPARA parameters OFFTYPE, OFFSET and OFFDET. If
OFFTYPE=0, there is no offset. If OFFTYPE=1, a constant offset
of value OFFSET is used. If OFFTYPE=2, an offset equal to half
of the current shell element thickness is used.
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Fixed target surface

Fixed nodes

Moving target surface

Slave nodes

Rigid links ==

I—
Master node, independent degrees of freedom

Figure 4.8-12: Modeling of fixed and moving target surfaces

Modeling of contactor surfaces: When there is an offset, then
BCTPARA parameter OFFDET determines the description of the
offset. If OFFDET=0, then Advanced Nonlinear Solution
determines the offset description (either spheres or normals, see
Section 4.8.2.1). The criterion used by Advanced Nonlinear
Solution is that an offset description of spheres is used for each
target surface that is convex or flat, and an offset description of
normals is used for each target surface that is concave. If
OFFDET=1, then the offset description is spheres, and if
OFFDET=2, then the offset description is normals.

When normals are used for the offset description, small steps
should be used in Solution 601. This is because the offset vectors
are assumed to remain constant during the equilibrium iterations. In

Advanced Nonlinear Solution — Theory and Modeling Guide 249



Chapter 4: Contact conditions

particular, at convergence, the offset vectors corresponding to the
previous converged solution are used.

Determination of contact, modeling issues: Contact is affected by
variables GAPBIAS and DEPTH, as described in Section 4.8.2.3.
GAPBIAS is set using BCTPARA parameter GAPBIAS (default
=0) and DEPTH is set using BCTPARA parameter PDEPTH
(default=0).

It is possible for the closest target segment, edge or node to not
be the expected one. An example is shown in Fig. 4.8-13. In this
example, the rim of the wheel is modeled with target segments.
Because the distance between a contactor node and a target
segment is measured in the direction of the target segment normal,
a contactor node interacts with the lower target surface, and the
contact algorithm detects a large overlap between this contactor
node and the lower target surface.

Another example is shown in Fig. 4.8-14. In Fig. 4.8-14(a),
there is a gap between the contactor node and the closest target
segment, as expected. In Fig. 4.8-14(b), the punch has moved
upward relative to the contactor node. Now there is a large overlap
between the contactor node and the closest target segment. This
segment is the only segment with a normal that points in the
direction of the contactor node.

In both Fig. 4.8-13 and Fig. 4.8-14, the large overlap is
unintended. In Solution 601, the equilibrium iterations would most
likely not converge. In Solution 701, the large forces between
contactor and target would overdistort the elements attached to the
contactor node.

One way to avoid the large overlaps is to use the DEPTH
feature so that contact is not detected between the contactor node
and the incorrect target segment. Another way to avoid this issue is
to create additional target segments as shown. Then the contactor
node is closest to one of the additional target segments.
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a) Orthographic view of wheel

Contactor node
cannot be in contact
with lower target

N

Upper target

/ //\ Lower target
DEPTH

c) DEPTH feature used

Contactor node
Contactor node is closest

is closest to
to lower target. Contactor \

/ upper target
node is not closest to upper * o

target, since there is no N\ Upper target
upper target segment with \

normal that points in the \

direction of the contactor '
node. |

7N\ Lower target
b) Side view of wheel

Contactor node is closest

to target edge T

\/‘ Upper target

Lower target

d) Wheel modeled with additional target surfaces

Figure 4.8-13: Modeling of a wheel

Choice of k,: k, is set using BCTPARA parameter NCMOD. The

default value of the normal contact stiffness &, is 1E11. However,

k, can be chosen for optimal convergence. Note that increasing £,

causes the maximum overlap between the contactor and the target
to become smaller. Also, increasing k, can lead to convergence
difficulties.
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Closest point

on target surface
that interacts

with contactor node

Target surface

Contactor
node

a) Intended interaction of contactor
node and target surface; contactor
node is not in contact with target

__DEPTH

c) DEPTH feature used, contactor node

is not in contact with target

Closest point

on target surface
that interacts

with contactor node

b) Unintended interaction of contactor
node and target surface; contactor is
in contact with target with large overlap

on target surface

with contactor node

d) Additional target segments used, contactor
is not in contact with target

Figure 4.8-14: Modeling of a punch

We recommend that the smallest value of kn be used such that

the maximum overlap is still acceptably small. For example, if the
target surface is curved, there will be a geometric error associated
with using a coarse contractor surface (Fig. 4.8-15). There is no
advantage if the maximum overlap is less than the geometric error.
So, if the mesh is coarse, a large maximum overlap can be used.
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Contactor surface, coarse mesh used

—

Geometric error
—
\

Target surface, fine mesh used

Figure 4.8-15: Modeling of a curved target surface

Another consideration for the choice of &, is the following.

Because the rigid target algorithm is node-based, and because the
contact stiffness is the same for each node in contact, the stresses
computed in higher-order elements on the contactor surface will be

inaccurate, if k&, is too small. For example, in a problem involving

pressing an element onto a contact surface, &, should be greater

EA
than IOO—L where £ is the Young’s modulus, A is the contact
n

area, L is the element thickness (in the contact direction) and 7 is
the number of nodes on the contact area. The basic concept is
illustrated in Fig. 4.8-16.

This issue also arises when lower-order elements are used, but
when lower-order elements are used, the variation in the consistent

nodal point forces is much less, so k, can be smaller for the same

accuracy in the element stresses.
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Uniform pressure load

v v

Young’s
modulus E Contact
L
) ° ) ° ¢ areca A

A

Contact forces acting on contactor nodes
are all nearly equal

a) Soft target surface, k; small,
element stresses are inaccurate

Uniform pressure load

v v

Contact forces acting on contactor nodes
are nearly equal to consistent forces
corresponding to pressure load

b) Hard target surface, k, large,
element stresses are accurate

Figure 4.8-16: Higher-order elements and rigid-target contact

Time step for Solution 701: For Solution 701, the time step should

be smaller than

Ar=+2 |7
G

This formula is derived from the following considerations.
Consider a single contactor node with mass m and no additional
stiffness or damping, with a velocity normal to the target. If this
node just touches the target at time # — Af, and penetrates the target
at time ¢, the node should remain in contact at time #+ Af . The
choice of At in the above equation satisfies this condition.

Clearly, decreasing k, will increase the time step Af.

A node that is out of contact at time ¢ — Af, in contact at time ¢
and out of contact at time 7+ At is said to have had a contact

reversal (Fig. 4.8-17).
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t‘rAtu
® Contactor node at t+At

® Contactor node at t—At
it—Atu

@® Contactor node at t

Figure 4.8-17: Contact reversal due to too large time step in
Solution 701

Time step selection in frictional contact: The time step size will
affect the frictional velocities and hence the results. This is
because, in static analysis, the nodal velocities used in the friction
calculations are calculated as the incremental displacements
divided by the time step.

In those parts of the analysis in which friction is important, a
“realistic” time step should be used.

In those steps of the analysis in which friction is not important,
a large time step can be used, which causes the velocities to be
small. For example, in metal forming analysis, a large time step
size can be used when establishing the blank holder force, and
during springback calculations.

Choice of ;. for frictional contact: U, is set using
BCTPARA parameter SLIDVEL. The default value of the
minimum sliding velocity # ., is 1E-10. However u, ;. canbe
chosen for optimal convergence. Decreasing u ;, can lead to

convergence difficulties.
We recommend that u ., be chosen from experimental data, or

that the largest acceptable value of u, ;. be used.
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Time step for Solution 701 for frictional contact: For Solution 701,
the time step should be smaller than

2mufmin

F

n

At =

to prevent reverse sliding. This formula is derived from the finite
difference equation corresponding to explicit time integration,
when applied to a single contactor node with mass m and no
additional stiffness or damping, sticking to the target, but with a
nonzero sticking velocity. If At is larger than the value in the
above equation, the velocity will increase, and eventually the node
will slide. The sliding will then tend to “reverse”, that is, for a
given time step, the sliding direction will be opposite to the sliding
direction in the previous step (Fig. 4.8-18).

Contactor node at t Contactor node at t+At
e t+Aj c
o— @

Figure 4.8-18: Reverse sliding due to too large time step in
Solution 701

j min

2
Note that when the time step is greater than Af = ” ”
y7;

solution is still stable.
Automatic time step selection in Solution 701: When using the

automatic time step selection options in Solution 701, the time step
returned from the rigid target contact algorithm is

. |m.
At =min [—
i kn
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where the minimum is taken over all contactor nodes. Notice that
friction is not considered in the automatic time step selection; this
is because the model remains stable even if the time step is larger
than the friction time step discussed above.

Birth/death: Rigid target contact surfaces can have a birth and
death time, similar to other contact surfaces. The birth and death
times are set by BCTPARA parameters TBIRTH and TDEATH
(default =0.0, corresponding to no birth and death).

Other user-input parameters:

BCTPARA TFORCE

The maximum tensile force for a node in tensile contact for which
convergence is allowed (default value 0.001). All nodes in tensile
contact must have a tensile force less than this value for the
solution to converge. Tensile contact is not used in Solution 701.
BCTPARA OCHECK

If OCHECK = 0, then oscillation checking (described in Section
4.8.2.3) is turned off. If OCHECK = ITE>O0, then oscillation
checking is activated after equilibrium iteration ITE. The default is
5. Oscillation checking is not used in Solution 701.

4.8.4 Rigid target contact reports for Solution 601

The following messages are output at the end of each converged
solution.

Maximum overlap at convergence:

Meaning: self-explanatory

Recommend: If the maximum overlap is too large, increase &, ;

if the maximum overlap is too small, decrease £, .
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Maximum tensile contact gap during iterations for nodes in contact
at convergence:

Meaning: A node that is in contact at the start of the time step
may temporarily move out of contact during the iterations, then
go back into contact before convergence. This report item
reports the maximum contact gap of all such nodes. When the
tensile contact gap is large, then convergence may be difficult.

Recommend: Either reduce the time step or decrease k, to
reduce the tensile contact gap.

Maximum friction velocity at convergence:

Meaning: For nodes in frictional contact, this is the maximum
friction velocity of a node (either sticking or sliding).

Recommend: If the maximum velocity is less than u,, ;. , and

the corresponding node should be sliding, decrease u,,,;, -

Number of nodes in contact, number of nodes in sticking contact,
number of nodes in sliding contact:

Meaning: Self-explanatory. Each node is counted once for each
target surface that the node is in contact with. So a node that is
in contact with two target surfaces simultaneously is counted
twice.

Change of contact status during iterations:

Meaning The number of nodes that switch contact status (not in
contact to in contact, or vice versa), is reported. If there are
many nodes that switch contact status, this may cause
convergence difficulties.

Recommend: Either reduce the time step or decrease &, .
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In contact at convergence, in tensile contact during iterations.
Meaning: The number of nodes which were in tensile contact
during the iterations (meaning that the nodes were almost out of

contact) and in contact in the converged solution. When there
are many such nodes then convergence may be difficult.

Recommend Either reduce the time step or decrease k, to

reduce the likelihood that nodes go into tensile contact.
Change in frictional contact status during iterations:

Meaning: The number of nodes that change frictional contact
status (from sticking to sliding or vice versa) is reported.

Recommend: If there are many nodes that switch frictional
contact status, reduce the time step or increase u ;-

The following messages are output at the end of each solution that
did not converge.

Maximum change of contact force at end of iterations:

Meaning: The contactor node for which the contact force had
the largest change is output.

Recommend: Examine the model near that contactor node for
hints about why the solution did not converge.

Change of contact status at end of iterations:

Meaning: The number of nodes that are changing contact status
at the end of the iterations.

Recommend: Reduce the time step or decrease £, .

Sliding reversal at end of iterations:

Meaning: The number of nodes that are undergoing sliding
reversals at the end of the iterations.
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Recommend: Reduce the time step or increase i ,;,

Change of target entity at end of iterations.

Meaning: The number of nodes that are oscillating between
different target entities at the end of the iterations.

Recommend: If oscillation checking is not turned on, turn it on.
Otherwise refine the target surfaces, or reduce the time step.

4.8.5 Rigid target contact report for Solution 701

The following items are output for each time step in which results
are printed or saved:

Number of nodes in contact, number of nodes in sticking contact,
number of nodes in sliding contact:

Meaning: See the corresponding message in Section 4.8.4.

Maximum overlap since solution start; maximum overlap since last
report.

Meaning: See the corresponding message in Section 4.8.4.

Recommend: See the corresponding recommendations in
Section 4.8.4.

Maximum friction velocity since solution start, maximum friction
velocity since last report:

Meaning: See the corresponding message in Section 4.8.4.

Recommend: See the corresponding recommendations in
Section 4.8.4.

Contact reversals since solution start, since last report:
Meaning: This is a count of the total number of contact

reversals. Also the number of contact reversals for the node with
the most contact reversals is given, along with the mass of the
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node.

Recommend: To reduce the number of contact reversals, either
reduce the time step or decrease k,

Sliding reversals since solution start, since last report:

Meaning: This is a count of the total number of sliding
reversals. Also the number of sliding reversals for the node with
the most sliding reversals is given, along with the mass of the
node.

Recommend: To reduce the number of sliding reversals, either
reduce the time step or increase u ;. .

4.8.6 Modeling hints and recommendations

e For a time step in which contact is established over a large area,
many equilibrium iterations may be required in Solution 601. This
is because the solution cannot converge until the nodes in and out
of contact are determined, and it may take many equilibrium
iterations to determine which nodes are in and out of contact. An
example is shown in Fig. 4.8-19. The ATS cutback method will not
be effective for this time step. Rather, the maximum number of
iterations should be set very large, so that the program can find the
converged solution.

e When forming a part that is relatively thin, setting the
PLASALG flag of the NXSTRAT card to 2 can allow the use of
larger time steps.

e The contact search algorithm may take a relatively long time for
the first iteration of the first time step. Similarly, the contact search
algorithm may take a relatively long time for the first iteration of
any time step in which a contact set is born.
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Prescribed displacement

|

Target surface 1 / Contactor surfaces

Target surface 2

a) Solution step before contact with target surface 2

l Possible contact in this area, many

equilibrium iterations may be required
Target surface 1 .
to accurately determine contact here.

Target surface 2

b) Solution step after contact with target surface 2

Figure 4.8-19: Establishment of contact over a large area during a
solution step

 As the contactor surface is refined, keeping k&, constant, the

overlap and contact force will decrease at each contactor node.
Hence k, may need to be adjusted as the mesh is refined. In

general, as the mesh is refined, &, can be decreased in order to

keep the overlap reasonable.

e Convergence in Solution 601 may become difficult when
contactor nodes that were not in contact with the target suddenly
interact with the target. An example is illustrated in Fig. 4.8-20.
Eventually the contactor nodes on the right will come into contact
with the target, and convergence may be difficult. Alternate ways
to model this situation are shown in Fig. 4.8-20.
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Contactor node in contact
. Contactor node not in contact
Drawing /
direction
<4+

—

*P

—

a) Poor modeling <41

P
oP

b) Good modeling

!

gy

¢) Good modeling

Figure 4.8-20: Contactor nodes suddenly coming into contact

Another example is shown in Fig. 4.8-21. In Fig. 4.8-21(a), the
top target surface is flat, and the indicated node suddenly comes
into contact with the top target surface. Convergence is very
difficult, because a very small change in the position of the
indicated node can cause the contact status of that node (and hence
the contact force) to change abruptly. In Fig. 4.8-21(b), the top
target surface has a round corner, and the indicated node gradually
comes into contact with the top target surface. Convergence is
easier, because a very small change of the position of the indicated
node results in only a very small change in the contact force.

In metal forming analysis, this situation in frequently
encountered in the modeling of the blank holder. The modeling is
easiest if the blank holder is modeled as a flat target surface. But
convergence is easier if round corners are added to the blank holder
wherever nodes on the blank are anticipated to contact the blank
holder during drawing.
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Contactor node in contact

Contactor node not in contact

Drawing /
direction
4“1 >« —1
a) Poor modeling <1 2 2
) . b) Good modeling
L > 4 1
‘ﬁ
¢) Good modeling

Figure 4.8-21) Contactor nodes suddenly coming into contact

4.8.7 Conversion of models set up using the NXN4 rigid target algorithm

The following hints may be useful when running models that were
set up using the NXN4 rigid target algorithm:

e The results from the NXN4 and current rigid target contact
algorithms will usually be quite different:

a) In Solution 601, the NXN4 rigid target algorithm only
determines the state of contact at iteration 0; the current rigid target
algorithm determines the state of contact at every iteration.

b) The NXN4 rigid target algorithm only allows contact between a
contactor node and one target surface; the current rigid target
algorithm allows contact between a contactor node and more than
one target surface.
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¢) In Solution 601, the NXN4 rigid target algorithm can force ATS
cutbacks when it detects tensile forces, the current rigid target
algorithm does not force ATS cutbacks.

d) In Solution 701, the basic formulation used by the NXN4 rigid
target algorithm is quite different than the basic formulation used
by the current rigid target algorithm.

e In general, in Solution 601, the current rigid target algorithm
requires more iterations than the NXN4 rigid target algorithm to
establish contact. This is because, in the NXN4 rigid target
algorithm, the state of contact is only determined in iteration 0.

¢ Once contact is established, the current rigid target algorithm
can be used with much larger time steps than the NXN4 rigid target
algorithm. The “excessive penetration” issues of the NXN4 rigid
target algorithm do not exist in the current rigid target algorithm.

e In the NXN4 rigid target algorithm, the ATS method is
automatically turned on in Solution 601. However, in the current
rigid target algorithm, the ATS method is not automatically turned
on.

¢ In Solution 701, the NXN4 rigid target algorithm does not affect
the critical time step. But the current rigid target algorithm can
affect the critical time step.

o In the NXN4 rigid target algorithm, the amount of friction is
based on the incremental displacements. In the current rigid target
algorithm, the amount of friction is based on the velocity
(incremental displacements divided by time step). So in frictional
analysis, the time step size will affect the results in the current rigid
target algorithm.
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5. Loads, boundary conditions and constraint
equations

5.1 Introduction

The objective of this chapter is to present the various options
available in Advanced Nonlinear Solution for the description of
applied loads, boundary conditions, and constraint equations.

e Table 5-1 lists the Case Control commands used for loading,
boundary conditions, and initial conditions.

Case Control Command | Comments

DLOAD Select load set (time varying)

LOAD Select load set (non-time varying)
Select single-point constraint set (including

SPC enforced displacement)
MPC Select multipoint constraint set

Select initial conditions set (displacements
IC i

and velocities)
TEMPERATURE Select initial and applied thermal load sets
BOLTD Select bolt preload set

Table 5-1: Case Control commands in Advanced Nonlinear
Solution

e Note that the selected DLOAD set can be used for any time
varying loads in both static and dynamic analysis. Similarly, the
selected LOAD set can be used for defining constant loads in both
static and dynamic analyses.

e Table 5-2 lists the load, boundary condition and initial condition
Bulk Data entries supported in Advanced Nonlinear Solution.

e Table 5-3 lists the Bulk Data entries used for combining applied
loads and/or enforced displacements in Advanced Nonlinear
Solution.
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Bulk Data Entry Comments

FORCE, FORCE1, FORCE2 | Concentrated force on nodes

MOMENT, MOMENT]I, Concentrated moment on nodes

MOMENT?2

SPC"** SPC1*, SPCADD* Fixed or enforced degrees of freedom
on nodes

SPCD* Enforced displacement on nodes

PLOAD Uniform pressure on shell element or
3-D solid face

PLOADI1 Distributed load on beam element
Concentrated force on beam nodes

PLOAD2 Uniform pressure on shell element

PLOAD4 Pressure or distributed load on shell or
3-D solid face

PLOADEI1 Varying pressure on plane stress or
plane strain 2-D solid element

PLOADX1 Varying pressure on axisymmetric 2-D
solid element

TEMP Applied temperature on nodes

TEMPD Applied default temperature

GRAV Mass proportional inertial load

RFORCE Centrifugal load

MPC, MPCADD Define multipoint constraints

TIC? Initial displacement and velocity on
nodes

BOLTFOR Preload force on bolts

Table 5-2: Bulk data entries for defining loads, boundary
conditions and constraints
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Bulk Data Entry

Comments

TEMPBC

QHBDY, QBDY1

Applied temperature on nodes in heat
transfer analysis

Uniform heat flux on boundary

element
QBDY2 Varying heat flux on boundary
element
QVOL Uniform volumetric heat addition
CONV Free convection on boundary element
RADBC Space radiation on boundary element
Notes:

1. SPC can also enforce displacement.
2. If enforced displacements are always 0.0 they become a boundary

condition.

3. Initial conditions are discussed in Section 10.1.
4.Can also be used to fix or enforce temperature in a heat transfer analysis.

Table 5-2: (continued)
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Bulk Data Entry Comments

Defines a linear combination of

LOAD constant loads

Defines a linear combination of time
DLOAD varying loads (by combining different
TLOADI entries)

TLOADI Defines time varying loads and
enforced motion

Defines the time functions used by the

TABLEDI1, TABLED2
loads

Table 5-3: Bulk data entries for applying loads and enforced
displacements

e The LOAD entry is used for combining loads that are constant
throughout the analysis while DLOAD is used for combining
time-varying loads. The DLOAD entry references a load defined
through a TLOADI1 entry. The TLOADI entry references the type
of load (applied load or enforced displacement), as well as the table
entry (TABLEDI or TABLED?2) defining the time variation of the
load.

e Both LOAD and DLOAD can be used in static and dynamic
analyses in Advanced Nonlinear Solution.

e A time function is defined as a series of points (t, f,(t)) in

which ¢ is time and fl(t) is the value of time function 7 at that time.

Between two successive times, the program uses linear
interpolation to determine the value of the time function.

e Advanced Nonlinear Solution does not support subcases. If
subcases are only used to change the applied load in a static
analysis, then they can be equivalently defined in Advanced
Nonlinear Solution as time-varying loads in a single case.
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e A typical time-varying load such as the enforced displacement
shown in Fig 5.1-1 (on the y direction of node 100) will be applied
as follows:

DLOAD, 1, 1.0, 10.0, 5

TLOAD1, 5, 3,, DISP, 7

SpPCD, 3, 100, 2, 1.0

TABLED2, 7, 0.0,

,0.0, 2.0, 2.0, 4.0, 4.0, 4.0, 5.0, 0.0,
,7.0, -2.0, 8.0, 0.0, ENDT

TSTEP, 1, 8, 1.0, 4

Time functions:

f(t)

Resulting load values for R= 101(t):

Time | 0.0 | 1.0 | 20| 3.0| 40| 50| 60| 7.0 8.0

(R | 20[30]40]40| 40| 0 |[-10[-20] 0

Figure 5.1-1: Typical time-varying load

Note that the TSTEP entry is used for both linear and nonlinear
analyses. In this case, 8 steps of size 1.0 are selected with output
every 4 steps.

Note that in Solution 701 with automatic time step selection, the
above input will not result in 8 steps. Instead, the critical time step
for the model will be used and output of results will be done as
soon as the solution time exceeds 4.0 and 8.0. See Section 7.1 for
details.
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e The LOAD case control command can point to a LOAD entry
or to individual loads, and similarly the DLOAD case control
command can point to a DLOAD entry or directly to a TLOADI
entry. The initial and applied temperature load sets must be
selected by the TEMPERATURE case control command if needed.
The active initial conditions must be selected by the IC case control
command.

e Boundary conditions can be grouped into two classes: essential
and natural boundary conditions (see ref. KJB, Section 3.3.2).
Essential boundary conditions can be enforced displacements or
rotations. Natural boundary conditions include all applied forces
and moments.

¢ Displacement boundary conditions include fixed nodal degrees
of freedom, enforced displacements and constraint equations.

¢ Force and moment boundary conditions include numerous types
of applied loading available in Advanced Nonlinear Solution.

¢ All displacement and force boundary conditions are referred to
the displacement coordinate system at the node at which they act.

o The externally applied load vector used in the governing
equilibrium equations is established using contributions from the
various applied loads.

For concentrated loads, the contributions of these nodal loads
are directly assembled into the externally applied load vector.

For pressure loading, distributed loading, centrifugal loading
and mass proportional loading, Advanced Nonlinear Solution first
calculates the corresponding consistent nodal load vectors
(consistent in the sense that the principle of virtual work is used)
and then assembles these load vectors into the externally applied
load vector. The evaluations of the consistent nodal load vectors for
the various types of loading are described in the following sections.

e Temperatures in Advanced Nonlinear Solution are used in
conjunction with material models which include temperature
effects.
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e [Each applied load or enforced displacement can be associated
with a time function which defines the time variation of the load
throughout the solution period (see example in Fig. 5.1-1).

» In a static analysis in which time-dependent effects (such as
creep or friction) are not included in the material models, time is
a "dummy" variable which is used, via the associated time
function of each applied load, to define the load intensity at a
step. Thus, the time step increment directly establishes the load
increments. So, in the example shown in Fig. 5.1-2, the same
solution is obtained regardless of the size of the time step

increment.
R
v
R A R A
200+ 200
150 |cevvmemnneennnnnns : 150 |oevvvvmemmmmmmnnnnnnnes :
100—-een--s : 2steps 100 : 2 steps
T 1 > T p B
1 2 t 2 4 t
Run 1: At=1.0 Run 2: At=2.0

Note: identical results are obtained in Run 1 and Run 2
for a linear static analysis.

Figure 5.1-2: Example of time varying loads

» In a dynamic analysis or if time-dependent effects are
included in the material models in a static analysis, time is used
in a similar way to define the load intensity of an applied load at
a step. However, in these cases, time is a "real" variable because
the time step increment is employed in the actual integration of
the equations of motion in a dynamic analysis, and in the
integration of the element stresses in a creep analysis. Hence, in
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these cases the choice of the time step increment is no longer
arbitrary.

o The effect of the time functions on the magnitude of the load is
different in the case of Load-Displacement Control (LDC) method
of Solution 601 (arc length method, see Section 6.2.6). In this case,
the applied loads are not associated with any time function and the
time variation of the loads cannot be specified by the user. The
contributions from all the loads are assembled into a constant load
vector denoted as the reference load vector. During the response
calculation, this reference load vector is scaled proportionally using
a load multiplier (in general different from one step to the next) that
is automatically computed by the program.

e The activation of the various applied loads can be delayed using
the X1 field in the TABLED2 entry. The arrival/delay time option
does not apply, however, to centrifugal and mass-proportional
loading, see Section 5.4.

The specification of a nonzero arrival time corresponds to a
shifting of the associated time function forward in time. If the time
function is used by a force boundary condition, this corresponds to
using a time function multiplier of zero for all times ¢ smaller than
the arrival time; see illustrations given in Fig. 5.1-3. However, if
the time function corresponds to a enforced displacement/rotation
the associated degrees of freedom are assumed to be free prior to
the arrival time (not having a zero prescribed value).
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Time functions:
f(t) Input time function Time function shifted

A \ / by arrival time
] e \

34/ \

2/
\ Time at solution
1] start=0.0

\ !
I I l‘- I\é ‘8 I 1‘0

-1 Arrival .
T Load active
time > \
2 4 Solution period N4 ‘
3 i

Figure 5.1-3: Example of the use of the arrival time option

5.2 Concentrated loads

¢ Concentrated loads are nodal point forces applied at the
specified nodes using the FORCE, FORCEI, or FORCE2 entries.
Concentrated moments are also applied to specific nodes using the
MOMENT, MOMENT1, or MOMENT?2 entries. Concentrated
forces on beam nodes can also be applied using the PLOAD1 entry.

e The direction in which a concentrated load acts depends on the
displacement coordinate system assigned to the node.

¢ Note that concentrated moments applied to shell nodes convert
the shell nodes automatically to 6 degree of freedom nodes. This is
done since the local V; and V, directions at shell nodes are
unknown to the user, and hence cannot be used in defining
moments.

¢ When the FORCEI or MOMENT]1 entries are used in a large
displacement analysis, they can be follower loads, meaning that the
direction of the applied force or moment can be updated during the
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simulation based on the current coordinates of the G1 and G2
nodes. This however is only possible if either G1 or G2 is set to be
the node of load application.

e The direction of a follower load can be controlled using RBAR
or RBE2 rigid elements (see Section 2.7). An example is given in

Fig. 5.2-1.

Gl

®

Rigid element
Node of load
application
G2
Thin cantilever
v

Follower force
att=0

a) Configuration at time t=0

Note: tek is the rotation at node k at time t.

Gl

Rigid element

G2

Follower force
at time t

b) Configuration at time t

Figure 5.2-1: Example of the use of a rigid element to establish the
follower load direction
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5.3 Pressure and distributed loading

e Some examples of pressure and distributed loading are shown in
Fig. 5.3-1.

a) Axisymmetric 2-D solid element b) 3-D solid element

PLOADXI1 PLOAD, PLOAD4

¢) Beam element d) Shell element
PLOADI1 PLOAD, PLOAD2, PLOAD4

Figure 5.3-1: Examples of distributed and pressure loading

¢ Distributed loads can be applied to beam elements using the
PLOADI entry. This entry can also be used to apply concentrated
forces on beam nodes.

e Pressure loads can be applied to shell elements using the
PLOAD or PLOAD4 entries, and to shell 3-node and 4-node
elements only (CTRIA3 and CQUAD4) using the PLOAD?2 entry.

e Pressure loads can be applied to axisymmetric 2-D solid
elements using the PLOADX1 entry. Pressure loads are input as
force per unit area.
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e Pressure loads can be applied to plane stress or plane strain 2-D
solid elements using the PLOADEI entry. Pressure loads are input
as force per unit area.

Deformation-dependent pressure loads that act onto the edges of
plane stress elements do not take into account the change in
element thickness due to in-plane deformations. For example, a
plane stress element that undergoes uniaxial tension due to a
deformation-dependent pressure load has internal stresses larger
than the pressure load by the ratio (original thickness)/(current
thickness)

e Pressure loads can be applied to the faces of 3-D elements
(HEXA, CPENTA, CTETRA, CPYRAM) using the PLOAD or
PLOADA4 entries.

e  When applied through the PLOAD4 entry, the pressure can be
normal to the face of the element, or along a specified direction.

e For each pressure/distributed load surface specified, a consistent
nodal load vector is calculated to represent the pressure/distributed
loading.

¢ In a large displacement analysis, the pressure/distributed
loading can be specified as deformation dependent for all element
types via the LOADOPT parameter in the NXSTRAT entry. In this
case, the calculations of the consistent load vectors are based on the
latest geometry and configuration of the loading surface.

e In Solution 601, deformation dependent loading should only be
used in a large displacement analysis. Equilibrium iterations (see
Chapter 6) should in general be performed if deformation
dependent loading is present.

o The loading direction for distributed loads can be along the
basic coordinate system or the element coordinate system. Loads
along element coordinate systems can be deformation dependent in
large displacement analysis.

e For pressure loading on 2-D and 3-D solid elements, the
consistent load vector consists of nodal forces acting on the
translational degrees of freedom only. The calculation of this load
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vector is given in ref. KJB, Section 4.2.1. The same effect occurs in
shells since the nodal translations and rotations are interpolated
independently.

e The distributed loading on a beam element results in equivalent
concentrated forces and moments acting at the beam nodes as
shown in Fig. 5.3-2. The calculation of these consistent forces and
moments also follows the equations in ref. KIB Section 4.2.1.

a2
4
v
| € 2
) L S
(a) Beam distributed loading
Fi = 55 (7a1+34)) Fy= 25 (Ta2+3q)
20 2 20 q2 q1
¢ l'J
/ I L > \
L2 12
M; = %(3%*2(12) Mz:%(3Q2+2Q1)

(b) Fixed-end forces/moments representation

Figure 5.3-2: Representation of beam distributed loading

e Displacements and stresses in the model are calculated by
representing the actual distributed loading using the consistent load
vector defined above. Hence, the calculated solution corresponds
only to these equivalent concentrated nodal forces and moments,
and may not correspond entirely to beam theory results taking
account of the distributed loading more accurately, see Fig. 5.3-3.
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In order to capture the applied moment more accurately, more
beam elements are required between sections A and B.

2 o
Bending
moment

a) Actual beam structure bending moment diagram

A B
%> 7
Bending | | |
moment | | I
I I (e
|
MA

Mg
b) Finite element bending moment diagram

using 3 beam elements

Figure 5.3-3: Beam element bending moments when subjected to
distributed loading

5.4 Inertia loads — centrifugal and mass proportional
loading

¢ Centrifugal and mass proportional loading can be used to model
the effect of body forces which arise from accelerations to which
the structure is subjected.

e Centrifugal loading is generated using the RFORCE entry, and
mass proportional loading is generated using the GRAV entry.
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e The mass matrix used in the calculation of centrifugal and mass
proportional loading can be lumped or consistent depending on the
mass setting for the whole model. Note that the computational
effort involved in the evaluation of a lumped mass matrix is, in
general, much less than the effort for a consistent mass matrix.

o Centrifugal and mass proportional loading can both be present
in a static or dynamic analysis. In a dynamic analysis, the type of
mass matrix employed in the load calculation and in the dynamic
response calculation are the same.

e  When elements die (due to rupture), their contribution to the
load vector is removed. Hence, the consistent load vector consists
(at all times) only of the contributions from the elements currently
alive.

¢ Centrifugal and mass proportional loading cannot be applied
with a delay/arrival time. The time function has to be shifted
manually to create this effect.

e Centrifugal or mass proportional forces at fixed nodes are taken
into account in the calculation of reaction forces.

Centrifugal loading

e The consistent load vector for centrifugal loading is computed
as follows (see Fig. 5.4-1):

’R=—j-p(’co><(tc)><tr)) dv (5.4-1)

where ‘@ = (27ZA1 [ f (t))R is the angular velocity vector, r is

the radial vector from the axis of rotation to the node, A is the scale
factor of the angular velocity, in revolutions/unit time, p is the
density, f(¢) is the time function, and R (no left superscript) is the
rotation vector.

Note that the centrifugal force is directly proportional to the
time function f{¢).
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‘o= angular velocity vector (0}

Centrifugal loads

Structure

Figure 5.4-1: Convention used for centrifugal loading

e When centrifugal loading is used in nonlinear analysis in
Solution 601, additional nonlinear terms are added to the stiffness
matrix and the load vector. These additional nonlinear
contributions are described in the following. Let the equilibrium of
the finite element system be calculated at time ¢ + A¢, iteration i.
Then

t+AtM t+AzU(i) +z+mK(i—1) AU(i) :t+AtR(i) _t+AtF(i—l) (5.4_2)

where M = mass matrix, K = stiffness matrix = (K LKy, ) , U

= acceleration vector, AU = incremental displacement vector, R =
external load vector, F = nodal point forces corresponding to
stresses, (i) = iteration 7, and ¢ + At = time ¢ + At.

The complete expression of the load contribution due to
centrifugal loading, including all nonlinear effects is

HAR () — J'p((,) x ((,) x( 0p LI+ AG-D L AU ))) dv
(5.4-3)

where °r = initial radial vector from the axis of rotation to the
node and @ = rotation vector. From the expression (5.4-3), it can
be seen that an additional nonlinear contribution K, to the

stiffness matrix is present, which is given by
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K AUY = [ p(ox(oxau®))dr
and that a deformation-dependent load is present, given by
t+AtR§\i]) __ J' p((l) % ((1) A UD )) dv

e Nonlinear centrifugal loading can be used in static analysis and
dynamic analysis.

e The correction to the stiffness matrix and the correction to the
loading are made when deformation dependent loading is requested
(LOADOPT parameter in the NXSTRAT entry).

Mass-proportional loading

e The consistent load vector for mass proportional loading in
direction i is computed using the mass matrix of the entire finite
element system and the specified accelerations (only in the
translational degrees of freedom), as follows:

‘R, ='Md, q, (5.4-4)

where d, is a direction vector with "1" in the portions of the

translational degrees of freedom acting into the direction i and "0"
in the other portions, and «; is the acceleration magnitude in the
direction i.

In the calculation, the mass coupling term between active and
deleted degrees of freedom is included. This mass coupling term
can be clearly seen in the discussion of ground motion loads later in
this section.

e Mass proportional loading is commonly used to model gravity
loading. For gravity loading, ‘a; is the acceleration vector due to

gravity. For example, for the z coordinate in the vertical direction
(increasing z corresponds to movement away from the ground),

t _ . .. .
enter ‘a_ =—g , where g is the (positive) acceleration due to
gravity.
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e Mass-proportional loads are frequently used to model ground
motions. The basis for using mass-proportional loads in modeling
ground motions is given briefly now. The equations of motion for
linear dynamics, not including damping but including ground
motions, are

M, M X K, K X R

M, M, X, K, K, ][x, R,
where X, is the vector of nodal point displacements for nodes not
attached to the ground and X, is the vector of nodal point

displacements for nodes attached to the ground. R, R, are

externally applied forces (for example, concentrated forces).
When the ground motions are the same at all nodes attached to
the ground, X, =u, +d;;x,,, X, =u, +d X, , X, =u, +d,x,,,
X, =u, +d,x, , where u, is the vector of nodal point
displacements relative to the ground for nodes not attached to the
ground and u, is the vector of nodal point displacements relative
to the ground for nodes attached to the ground. Clearly, u, =0.
Also d,; is the direction vector for the nodes not attached to the

ground and d,, is the direction vector for the nodes attached to the

ground, with “1” in the portions of the translational degrees of
freedom acting into the direction i and “0” in the other portions.
The matrix equation of motion becomes

{Mu M12:| |:ﬁ1:|+ dli).égi +_K11 Ku} {ui_’_ dlixgi :|:R1}
Msz M,, 0 dZijégi _Ksz K,, 0 d2ixgi R,

(5.4-6)
N K, K d“ — 0 : _ d]i
ow T = since the vectord, =
K, Ky | d, _0 d,

corresponds to a rigid body motion. The matrix equation of motion
becomes
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M, M,|y + K, K|y _ R, _ M,
Msz M, |0 Ksz Ky, 0 R, Msz

and therefore the system of equations solved is

M, u +K,u =R, -M,dx, -M,d,x,

gi

Mu} d X,
M, d2ijégi

(5.4-8)

The mass coupling term between active and deleted degrees of

freedom (M, d,, X, ) is included.

It is seen that the ground acceleration can be applied to the
model as a mass-proportional load, provided that the resulting
nodal point motions are interpreted as motions relative to the

ground.
Please note:

» To enter a positive ground acceleration jégi ,

negative mass-proportional load a, .

specify a

» All single-point fixities are relative to the ground. In other

words, fixing a node attaches it to the ground.

» All enforced displacements are relative to the ground.

» All single DOF scalar elements are attached to the ground.

Damping can be used. However, scalar dampers and single DOF
damping scalar elements are attached to the ground. Mass-
proportional Rayleigh damping acts relative to the ground motion.
Although we have illustrated the procedure only for linear
dynamics, the procedure is also valid in nonlinear dynamics.

5.5 Enforced motion

e Enforced displacements at specified degrees of freedom can be
applied in Advanced Nonlinear Solution using the single point
constraint entries (SPC, SPC1, or SPCADD) or the enforced
motion (SPCD) entry. The applied displacement can be constant or

described by a time function.
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¢ Enforced velocities and accelerations are not supported.

¢ Nodal point translations and rotations can be enforced. The
degree of freedom is in the direction of the displacement coordinate
system assigned to the node.

¢ A nodal point can be "fixed" by prescribing a zero displacement
component for all degrees of freedom at this node. This is,
however, different from imposing a permanent single-point
constraint on the GRID entry because the enforced degrees of
freedom are retained in the system matrices (i.e., equation numbers
are assigned) whereas the degrees of freedom at which permanent
GRID constraints are imposed are deleted from the system
matrices.

e Note that enforced displacements are not recommended on
contactor surfaces (see Chapter 4).

e Delay or arrival times can be used for applied displacements. In
this case, the displacements are free before the arrival time. Once
the arrival time is reached, the displacements are set to their
enforced values. However, the enforced value can be interpreted as
an absolute or total displacement or as a relative displacement
based on the configuration at the arrival time. This is controlled by
the DISPOPT flag in the NXSTRAT entry.

e A new enforced displacement can also be applied in a restart
run. In this case as well, the displacement can be a total value or
relative to the configuration at the start time of the restart analysis.

5.6 Applied temperatures

e In Advanced Nonlinear Solution, temperature can be prescribed
in any structural analysis. In addition, in heat transfer and TMC
analyses, temperature can be prescribed at certain parts of the
model, and the program will solve for the complete temperature
field.

e Temperature can be applied directly to a node using the TEMP
entry or to the whole model using the TEMPD entry. Direct nodal
values applied with TEMP override the default TEMPD value. This
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is applicable to structural analysis, and to initial conditions for a
heat transfer analysis.

e The TEMPERATURE case control command selects the initial
or reference temperature field.

¢ In heat transfer analysis, temperature boundary conditions are
applied using the TEMPBC entry or the SPC entry.

e The applied temperature can also be made time dependent by
using the TLOADI1 entry, and referencing the TLOADI in the
DLOAD command as explained in the beginning of this chapter.

e Ifanon-zero arrival time option is used in the nodal temperature
definition, then the time function value will be zero when the
solution time is less than the arrival time.

e It should also be noted that when using higher-order elements,
the temperatures can be significantly different within the element
than at the nodal points. For example, the temperature can be
negative at points within an element, although the nodal point
temperatures are all non-negative. This is illustrated in Fig. 5.6-1
(see element 1). This observation can be important when
performing an analysis with temperature-dependent material
properties.
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Linear elements:

0
0,
0y
o X
EL1 EL2 EL3 EL4 EL5 ELG6
Quadratic elements:
0
0
0<0o0
6
— X
El 1 El 2 ElL 3

Figure 5.6-1: Interpolation of temperature boundary conditions

5.7 Bolt preload

¢ Advanced Nonlinear Solution supports the preloading of bolt
elements. The bolt preloads or forces are applied at an extra
solution step performed at the very beginning of the analysis prior
to the rest of the step-by-step solution.

e The bolt preloads are applied via the BOLTFOR entry which
should be used together with a BOLTLD case control command.

e Bolt preload (and bolts in general) are only available in Solution
601.

e See Section 10.7 for more details on the bolt feature.
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5.8 Constraint equations

e Advanced Nonlinear Solution supports single-point and
multipoint constraints. The single-point constraints are defined
using the SPC, SPC1, SPCADD entries. Permanent single-point
constraints can also be defined using the GRID entry. This case,
however, totally removes the associated degree of freedom from
the solution.

e Multipoint constraints are defined directly using the MPC and
MPCADD entries. They can also be defined through R-type
elements (see Section 2.7).

The following relationship holds for multipoint constraints:

ZRjuj:O
J

¢ Constraints can be enforced in two ways. The default is for the
first degree of freedom in each constraint (u;) to be a dependent
degree of freedom. The second approach (called general constraints
approach) is to add a Lagrange multiplier to enforce each
constraint, and hence keep all constraint degrees of freedom
independent. This is done by setting parameter GENMPC=1 in
NXSTRAT, and it applies to all constraint equations.

e Note that in the first approach, each constraint reduces the
number of independent equations by one, while in the second
approach, each constraint adds one extra degree of freedom (the
Lagrange multiplier). Hence, the first approach should be used
whenever possible. In some cases, however, one cannot easily
express a constraint in a way such that dependent degrees of
freedom are not constrained to other dependent degrees of freedom.

¢ General constraints (GENMPC=1 in NXSTRAT) cannot be
used in explicit analysis (Solution 701).

e Multipoint constraints are only approximately satisfied in an
explicit analysis (Solution 701), since imposing the constraint
exactly requires a non-diagonal mass matrix.
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e For R-type elements in large deformation the multipoint
constraint can have variable coefficients that are updated based on
the deformation of the structure.

e Constraints can be applied in static and dynamic analyses.

e Itis important to note that adding constraint equations to the
finite element model results in adding external forces (and possibly
moments) at the degrees of freedom specified by the constraint
equations. These forces are included in the reaction calculations.

e Note that enforced displacements detailed in Section 5.5 are
internally enforced using single-point constraints.

e For an R-type element to produce multipoint constraints with
changing coefficients that capture large deformations, the
constraints must be between only 2 nodes. In addition, one of the
nodes should possess all the independent degrees of freedom and
the other node should only possess dependent degrees of freedom.
These large displacement multipoint constraints are internally
called rigid links.

e Mesh glueing (Section 5.9) internally creates general constraint
equations that are enforced using Lagrange multipliers. All
independent degrees of freedom associated with the glued mesh
remain independent.

5.9 Mesh glueing

¢ The mesh glueing feature is used to attach two surfaces
together. These two surfaces usually involve different finite
element meshes (see Fig. 5.9-1). The glueing procedure results in a
smooth transition of displacements and tractions between the glued
surfaces. Mesh glueing sets are defined in the BGSET entry, and
the glued surfaces are defined via the BSURFS or BCPROPS
entries.
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Mesh glueing along dashed lines

Figure 5.9-1: Examples requiring mesh glueing
o This feature is useful for several applications:

» When a fine mesh is desired in a certain region and coarser
meshes are desired in other regions.

» When different regions are meshed independently with
unstructured free meshes.

» When different regions are meshed with different element
types (such as a tetrahedral mesh attached to a brick mesh).

o The proper glueing constraint between the two surfaces can be
expressed as

jr A-u' —u?)dT =0 (5.9-1)

where u' is the displacement of the first glued surface, u” is the
displacement of the second surface and 4 is the Lagrange multiplier
field imposing the constraint.

One of the glued surfaces is designated as the master and the
other as the slave. The Lagrange multiplier field involves nodal
degrees of freedom at the nodes of the slave surface, and the
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integration is also performed over the slave surface. Hence Eq.
(5.9-1) becomes

[ 2% @" —u®)dr® =0 (5.9-2)

The accurate integration of Eq. (5.9-2) is not trivial since the
displacements " and u® are generally interpolated over different
domains. This integration is automatically performed by Advanced
Nonlinear Solution.

e Mesh glueing is not available in Solution 701.

e Glueing is superior to tied contact and should be used in its
place whenever applicable.

e Only 3-D solid elements can be used in glueing. The glued
element faces can be triangles or quads, and they can have linear or
quadratic displacement interpolation. Shell elements are not
supported.

e Nodes on glued surfaces (both master or slave) cannot have
dependent translation degrees of freedom. Therefore, they cannot
be slaves in multi-point constraints involving translations.

e If one glue surface is smaller than the other, as shown in Fig.
5.9-2(a), the smaller surface should preferably be the slave.
However, the glueing will also work if the smaller surface is the
master. The two glued surfaces can also be partially overlapping as
shown in Fig. 5.9-2(b).

o The two glued surfaces should ideally be smooth surfaces (no
sharp corners). If corners exist it is better to create multiple glued
meshes.

o Ifthe two surfaces have different mesh densities, either one can
be used as slave (unlike contact where the finer one should be the
contactor). Using the finer meshed surface as a slave will produce
more equations, since the Lagrange multipliers degrees of freedom
are on the nodes of the slave surface.
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Master surface

Slave surface

|

Slave surface

Master surface

Glue surface 2

Glue surface 1

Figure 5.9-2: Examples of master and slave glue surfaces
e The master glue surface can be enlarged beyond its geometric
bounds, so that the slave points that project slightly outside the

master can still be considered glued. This is done via the EXTi
parameter in the BGSET card.

5.10 Convection boundary condition

e Convection boundary conditions take the following form
s _ s
g’ =h(0,-0°)
where 4 is the convection coefficient, 8, is the external ambient
temperature, and 6° is the unknown body surface temperature.
e Convection boundary conditions are applied using surface

elements generated using the CHBDYE or CHBDYG entities
which point to a CONYV entry. This entry provides some of the
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necessary inputs and in turn points to a PCONV entry providing
more input. The heat convection coefficient /4 is provided in the
material definition entries.

e The following types of convection boundary conditions are
available:

Line convection boundary conditions, used in conjunction with
2-D planar elements and 2-D axisymmetric elements.

Surface convection boundary conditions, used in conjunction
with 3-D solid or shell elements.

e The convection coefficient 4 can be either temperature-
dependent (through a MATT4 or MATTS entry), or time-
dependent. This is achieved via the Control Node setting in the
CONYV entry. It cannot, however, be both temperature and time
dependent.

e The ambient temperature 6, is obtained from node using

parameter TA1 in the CONV entry. The temperature at node TA1
must be prescribed, and can be time-varying.

e The heat flux, ¢°, is converted to nodal heat fluxes by consistent
integration over the convection boundary. See ref. KJB, Section
7.2.3 for details. In this integration, the temperatures are
interpolated from their nodal values, and if the heat transfer
coefficient, 4, is temperature dependent, it is calculated for each
integration point based on its interpolated temperatures.

5.11 Radiation boundary condition

e Radiation boundary conditions take the following form
4
q° = O'fe(ﬁr4 —(HS) )

where o is the Stefan-Boltzmann constant, f'is a view factor or
shape factor, e is the material emissivity, 6. is the temperature of
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the radiative source (or sink) and @° is the unknown body surface
temperature. Both temperatures are in the absolute scale. Note that
in the above equation the absorptivity is assumed to be equal to the
emissivity.

e Radiation boundary conditions are applied using surface
elements generated using the CHBYDE or CHBYDG entries which
point to a RADBC entry. This entry provides some of the necessary
inputs and in turn points to a RADM or RADMT entry providing
the rest of the inputs.

e The Stefan-Boltzmann constant (o) and the absolute
temperature offset are set in PARAM entries (SIGMA and TABS

parameters). Note that although & is a constant it must be input in
the proper units.

e The following types of radiation boundary conditions are
available:

Line radiation boundary conditions, used in conjunction with 2-
D planar elements and 2-D axisymmetric elements.

Surface radiation boundary conditions, used in conjunction
with 3-D solid or shell elements.

e The emissivity coefficient e can also be temperature-dependent
by using the RADMT entry.

e The radiative source/sink temperature 6. is specified in the

NODAMB parameter in the RADBC entry. The temperature at this
node NODAMB must be prescribed, and can be time-varying.

e The view or shape factor fis input via the FAMB parameter in
the RADBC entry.

e Default values of some radiation settings are defined using the
BDYOR entry.

e The heat flux, ¢°, is converted to nodal heat fluxes by consistent
integration over the radiation boundary. See ref. KJB, Section 7.2.3
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for details. In this integration, the temperatures are interpolated
from their nodal values, and if the emissivity, e, is temperature
dependent, it is calculated for each integration point based on its
interpolated temperatures.

5.12 Boundary heat flux load

e Applied boundary heat flux is specified by equation (8.1-3):
ref. KIB

Section 7.2.1 20 S
k.~ =4
on 5

where qs is the surface heat flux input to the body across some
part S, of the body surface, &, is the body thermal conductivity in

direction n, the outward normal to the surface, and 6 is the
temperature.

e Boundary heat flux loads are applied either directly to the nodes
defining a face of an element using the QHBDY entry, or by
pointing to existing surface elements (CHBDY; type) using the
QBDY1 or QBDY?2 entries.

e The heat flux, ¢°, is converted to nodal heat fluxes by consistent
integration over the boundary. See ref. KJB, Section 7.2.3 for
details.

e Note that any boundary of the domain which does not have

either the heat flux or temperature specified will be assumed by
virtue of the formulation to have

g’ =0

i.e., this part of the boundary is insulated, allowing no heat transfer
across it.
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5.13 Internal heat generation

ref. KJB e This form of thermal loading results from the generation of heat
Section 7.2.3 within the domain, which is introduced into the governing equation
system by the term ¢” of equation (8.1-1).

e Internal heat generation is applied via the QVOL entry which
provides a load multiplier to the heat generation parameter HGEN
set in the MAT4 or MATT4 entries.

e A negative heat generation term ¢” indicates a loss of heat
within the body.

e The heat generation term can be temperature-dependent by
making the HGEN parameter temperature dependent using the
MATT4 entry.

e The heat flux generated per unit volume, ¢°, is converted to
nodal heat fluxes by consistent integration over the element
volume. See ref. KJB, Section 7.2.3 for details.
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6. Static and implicit dynamic analysis

This chapter presents the formulations and algorithms used to solve
static and dynamic problems using Solution 601. This includes
convergence checking and the available solvers. Most flags or
constants that need to be input in this chapter are in the NXSTRAT
bulk data entry.

Information about the progress of the solution is always output
to the .f06 file. A shorter summarized output is provided in the .log
file.

6.1 Linear static analysis

ref. KIB
Sections 8.2.1,
8.2.2 and 8.2.3

¢ In linear analysis using Solution 601, the finite element system
equilibrium equations to be solved are

KU =R

e A direct sparse solver, iterative multi-grid solver or 3D iterative
solver can be used to solve this system of equations, see Section
6.5.

¢ The equation solvers assume that the system stiffness matrix is
symmetric.

¢ The equation solvers assume that the system stiffness matrix is
positive definite. This requirement can be summarized as follows:
The Rayleigh quotient

0K}
0’0

p(9)

must be greater than zero for any displacement vector ¢ . Since
2 ((I)) is equal to twice the strain energy stored in the system (for

&' ¢ =1), this is equivalent to the requirement that the strain

energy stored in the finite element system when subjected to any
displacement vector ¢ must be greater than zero.
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» Hence, the finite element system must be properly
supported, so that the system cannot undergo any rigid body
displacements or rotations.

» It also follows that no part of the total finite element system
must represent a mechanism, see ref. KJB, Fig. 8.7, p. 704, for
such a case.

» Nodal point degrees of freedom for which there is no
stiffness must be restrained. A degree of freedom does not carry
any stiffness if all of the elements connected to the nodal point
do not carry stiffness into that degree of freedom. In this case
the degree of freedom must be restrained using boundary
conditions.

Note that nodal degrees of freedom which are not connected
to any elements and are not used as dependent nodes in
constraint equations are automatically deleted by the program.

» More details on the solvers available in Solution 601 are
provided in Section 6.5.

6.2 Nonlinear static analysis

ref. KJB
Section 8.4

¢ In nonlinear static analysis the equilibrium equations to be
solved are:

t+Al‘R _t+AIF — 0

where 'R is the vector of externally applied nodal loads at time
(load) step #+At, and “**F is the force vector equivalent (in the
virtual work sense) to the element stresses at time #+A¢.

¢ The nonlinearity may come from the material properties, the
kinematic assumptions, deformation dependent loading, the
presence of contact, or the element birth/death feature.
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e The solution to the static equilibrium equations can be obtained
in Solution 601 using

» Full Newton iterations, with or without line searches

» Load-displacement-control (LDC) method (arc length
method)

These methods are described in detail in the following sections and
also in Sections 6.1 and 8.4 of ref. KJB.

e The same equation solvers are used for both linear and
nonlinear analysis. However, the automatic time stepping
algorithms do not require the stiffness matrix to be positive
definite, thus allowing for the solution of bifurcation problems.

o The stiffness stabilization feature can be used to treat some
nonlinear static problems involving a non-positive definite stiffness
matrix. See Section 10.6 for details.

6.2.1 Solution of incremental nonlinear static equations

Full Newton iterations: In the full Newton iteration method, the
following algorithms are employed:

» Without line search
A=) A ZrAR AR GD (6.2-1a)
A gD A D) (6.2-1b)
» With line search
A=) A ZrAR AR GD (6.2-1c)
EA O 2D 4 gOAY® (6.2-1d)

where K" is the tangent stiffness matrix based on the

solution calculated at the end of iteration (i - 1) at time +Az, "R
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is the externally applied load vector at time ¢ + Af; “**F @ s the
consistent nodal force vector corresponding to the element stresses
due to the displacement vector AU s AUY is the incremental

displacement vector in iteration (i) and £ is an acceleration factor
obtained from line search. Note that, since the full Newton iteration
method is employed, a new stiffness matrix is always formed at the
beginning of each new load step and in each iteration.

e Anupper bound for the incremental displacements in AU can be
set by the user (via the MAXDISP parameter in the NXSTRAT
entry). If the largest increment displacement component exceeds
the limiting value, the whole incremental displacement vector is
scaled down to satisfy the upper bound.

This feature is useful for problems where one or more iterations
can produce unrealistically large incremental displacements. This
may happen, for example, if a load is applied to contacting bodies
before contact is properly established, or in the first unloading steps
after a material has undergone plastic deformation.

The default (MAXDISP=0.0) is

» Dynamic analysis or analysis without contact: no limit on
incremental displacements

» Static analysis with contact: maximum incremental
displacement is 1% of the maximum model dimension.

6.2.2 Line search

The line search feature is activated by setting LSEARCH=1 in
NXSTRAT. In this case, the incremental displacements obtained
from the solver are modified as follows

t+At U(l) :t+AtU(i71) +ﬂ(t)AU(1)

where  is a scaling factor obtained from a line search in the
direction AUY in order to reduce out-of-balance residuals,
according to the following criterion

300

Advanced Nonlinear Solution — Theory and Modeling Guide



6.2: Nonlinear static analysis

AU(i)T I: t+AtR_t+AtF(i)}
AU(i)T I: z+AtR_t+AtF(i—1)]

<STOL (6.2-2)

where STOL is a user-input line search convergence tolerance (in
NXSTRAT), and “**F? is calculated using the total displacement
vector MUY,

The magnitude of B is also governed by the following bounds

LSLOWER < < LSUPPER (6.2-3)

where LSUPPER and LSLOWER are user-input parameters in
NXSTRAT.

The incremental displacements are not modified (i.e., f = 1) if
no suitable line search parameter satisfying Equations (6.2-2) and
(6.2-3) is found within a reasonable number of line search
iterations, or if the unbalanced energy falls below a certain user-
specified energy threshold ENLSTH.

e Line search is off by default. It is useful for problems involving
plasticity, as well as large displacement problems involving beams
and shells. It is also helpful in many contact problems. In the case
of contact problems, it is sometimes better to set LSUPPER to 1.0
so that the line search only scales down displacements.

o The effect of line search is more prominent when the current
displacements are far from the converged solution. This usually
happens in the first few iterations of a time step, or when a major
change occurs in the model, due for example, to contact
initiation/separation, or the onset of plasticity.

¢ Note that line search increases the computational time for each
iteration. Most of the extra time goes towards the evaluation of
“MEO in Equation (6.2-2). However, for the types of problems
mentioned above the reduction in the number of iterations and the
ability to use bigger time steps leads to an overall reduction in
solution time.
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6.2.3 Low speed dynamics feature

¢ A low speed dynamics option is available for static analysis
(can only be used with ATS or TLA/TLA-S features). It is
activated with ATSLOWS in the NXSTRAT entry. Low speed
dynamics is a special technique developed to overcome
convergence difficulties in collapse, post-collapse and certain
contact problems.

In essence, this feature includes dynamics effects in an
otherwise static problem. Solution 601 solves

aM t+At["J(i) +C t+At['J(i) +t+AtK(i—1) AU([) :t+AtR _t+AtF(i—1) (624)

where M is the mass matrix and « is a mass scaling factor that can
vary from 0.0 to 1.0 (default 1.0), to partially account for the
dynamic inertia effect . The C matrix is evaluated using

C=pK

where 3 is a user-specified parameter (default 10™), and K is the

(initial) total stiffness matrix (corresponding to zero initial
displacements). For more details on this dynamics equation refer to
Section 6.4. The o and S parameters are set via the ATSMASS and
ATSDAMP parameters in the NXSTRAT entry.

e When low speed dynamics is used with ATS, the time step size
will influence the results. It is recommended that the time step size
be at least 10°3. Or, it is recommended that the loads be held
constant for a period of time of at least 10*5 so that the dynamic
effects die out.

¢ Note that mass effects may not be needed in the low speed
dynamic analysis. In this case, set the o parameter in Eq. (6.2-4) to
zero, or, alternatively, set the material densities to zero. That way,
only structural damping effects will be present in the otherwise
static analysis.
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6.2.4 Automatic-Time-Stepping (ATS) method

e The automatic-time-stepping (ATS) method controls the time
step size in order to obtain a converged solution. It is activated with
AUTO=1 in the NXSTRAT entry. If there in no convergence with
the user-specified time step, the program automatically subdivides
the time step until it reaches convergence. In some cases, the time
step size may be increased to accelerate the solution.

e Parameter ATSDFAC in the NXSTRAT entry sets the division
factor that Solution 601 uses to subdivide the time step when there
is no convergence. Successive subdivisions can be performed, if
necessary, provided that the time step size is not smaller than a
minimum value. This minimum value is set as the original step size
divided by a scaling factor provided by the user (ATSSUBD in
NXSTRAT).

¢ Note that the loads at any intermediate time instant created by
the ATS method are recalculated based on the current value of the
time functions.

o The solution output is only furnished at the user-specified times,
except when the solution is abandoned due to too many time step
subdivisions without convergence. In this case, the solution output
is also given for the last converged time instant.

e There are three options for controlling the time step size once
convergence is reached after ATS subdivisions. Either of these
options can be selected, or Solution 601 can make the selection
automatically (ATSNEXT in NXSTRAT).

1. Use the time increment that gave convergence

In this case, the program continues the analysis using the last
converged time step. Once the end of the user-specified time

step is reached, the program may increase the time step based
on the iteration history. This option is the default in analyses

without contact.

2. Return to original time step size

In this case, the program continues the analysis using the
original user-provided time increment. This option is the default
when contact is present.
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3. Proceed through user-defined time points

In this case, the program sets the time step size such that the
final time is that initially provided by the user. Hence, the
analysis always proceeds through all user-specified time steps.

e The ATS method can also increase the time step beyond the
user-specified value if the iteration history shows that such an
increase is useful. This is only possible in a static analysis without
low-speed dynamics. The increase in time step cannot be larger
than a user-specified factor (via ATSMXDT in NXSTRAT). Due to
this increase, the analysis may be completed in fewer time steps
than requested. This time step increase is only possible when the
ATS subdivision is set to “Return to original step size”.

¢ Following is an example to illustrate the basic options of ATS
subdivisions. Assume we are in load step 15 of a particular problem
with initial time t = 15.0 and a time step of 1.0. The solution does
not converge and the time step is set to 0.5 (assuming a time step
division factor of 2.0). If that too does not converge, the time step
is set to 0.25. If that converges, the results are not yet saved.
Another sub-step is performed for load step 15. The size of this
step depends on which of the three options above is selected:

» In option 1, the next sub-step will use a time step size of
0.25. Two other sub-steps will be performed within load step 15
both of size 0.25 (assuming they all converge).

» In option 2, the next sub-step will use a time step size of 1.0.
If this converges load step 16 starts with t = 16.25.

» In option 3, the sub-step will use a time step size of 0.75. If
this converges load step 16 starts with t = 16.0.

e Note that while options 1 and 2 may result in outputted solution
times that are different from those initially specified by the user,
there are certain time values that are not skipped. These are the
time values at the end of “time step blocks”. In this case, the time
step size is reduced such that the solution time at the end of the
block is satisfied. The program determines these time step blocks
based on the time step pattern input by the user. The final solution
time is always assumed to be an end of a time step block.
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e Option 2 is useful for contact because of the highly nonlinear
response (sudden changes in stiffness) that occurs when a nodes
comes into contact, or is released from contact, or even moves from
one contact segment to another. A small step size may sometimes
be needed only in the vicinity of this contact incident. Once contact
is established/released the problem is “less nonlinear” and the
original time step size can be used.

6.2.5 Total Load Application (TLA) method and Stabilized TLA (TLA-S)
method

e The Total Load Application method is useful for nonlinear static
analysis problems where all applied loads do not require the user to
explicitly specify the time step sequence. It is activated with
AUTO=3 in the NXSTRAT entry. In this case, the user applies the
full load value and Solution 601 automatically applies the load
through a ramp time function, and increases or reduces the time
step size depending on how well the solution converges. This
method cannot be used in dynamic analysis.
The TLA method automatically activates the following features
that are suitable for this type of uniform loading static problems:
- The first time step has a size of 1/50 of the total time. May
be modified by TLANSTP in NXSTRAT.
- Maximum number of equilibrium iterations is 30. May be
modified by TLAMXIT in NXSTRAT.
- Line search is used.
- Limiting incremental displacements per iteration is set to
5% of the largest model dimension. May be modified by
TLAMXDF in NXSTRAT.
- The maximum number of time step subdivisions is set to
64.
- The time step cannot be increased more than 16 times its
initial size.

o The Stabilized TLA method (TLA-S) is identical to the regular
TLA method with the addition of various stabilizing features to
create a more stable system and aid convergence. The TLA-S
method is activated with AUTO=4 in the NXSTRAT entry. The
sources of stabilization are low speed dynamics which adds inertia
and stiffness proportional damping (see Section 6.2.3), contact
damping (see Section 4.6.5), and stiffness stabilization (see Section
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10.6). The amount of stiffness stabilization, low speed dynamics
inertia and damping, and contact damping can be adjusted by the
parameters TLASTBF, TLALSMF, TLAMSDF and TLACTDF in
the NXSTRAT entry. Indicators are provided in the output file after
each converged solution to show if the forces due to the various
stabilization effects are excessive.

e The TLA-S method can serve several purposes. If the
stabilization indicators are all within reasonable bounds, typically
less than 1% of the internal force indicator, then the TLA-S
solution may be reasonably accurate. However, even when the
indicators are large, the TLA-S method provides a useful
approximate solution that can frequently be used to detect
modeling errors such as incorrect contact definition, applied load,
or boundary conditions.

o The following features cannot be used with the TLA and TLA-S
methods:

- All materials with creep effects

- All materials with viscosity effects

- Rigid target contact

6.2.6 Load-Displacement-Control (LDC) method

e The load-displacement-control (LDC) method (arc length
method) can be used to solve for the nonlinear equilibrium path of
a model until its collapse. If desired, the post-collapse response of
the model can also be calculated. The main feature of the method is
that the level of the externally applied loads is adjusted
automatically by the program.

The LDC method can only be used in nonlinear static analysis
in which there are no temperature or creep effects. The LDC
method can be used in contact problems.

e The formulations used in the LDC method used in Solution 601
are described in ref. KJB Section 8.4.3 and the following reference:

ref.  Bathe, K.J. and Dvorkin, E.N., "On the Automatic
Solution of Nonlinear Finite Element Equations," J.
Computers and Structures, Vol. 17, No. 5-6, pp. 871-
879, 1983.
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e The LDC method is activated via the AUTO flag in the
NXSTRAT entry. An enforced displacement on a user-specified
degree of freedom is used to evaluate the initial load vector, and
analysis continues until a specified displacement is reached at a
certain node, or a critical point on the equilibrium path is reached.
Variants of the LDC method are commonly referred to as arc-
length methods.

e The equations employed in the equilibrium iterations are
t+AtK(i—1) AU(i) — ( x+At/1(i—1) + A;t(i) )R _t+AtF(i—1)

A () A L AY® (6.2-5)
£(A2%,AU")=0

where
AR = tangent stiffness matrix at time #+At¢, end of
iteration (i-1)
R = constant reference load vector
A 20D = oad scaling factor (used on R) at the end of

iteration (i-1) at time ¢+A¢
ALY = increment in the load scaling factor in iteration

0

The quantities "™ F"" and AU" are as defined for Eq. (6.2-1).

Note that in Eq. (6.2-5), the equation /= 0 is used to constrain
the length of the load step. The constant spherical arc length
constraint method is usually used and the constant increment of
external work method is used if the arc length method has
difficulties to converge.

The reference load vector R is evaluated from all the
mechanical loads.

e To start the LDC method, the load multiplier for the first step *'A
(used to obtain the corresponding load vector “4 R) is calculated
using a user-specified enforced displacement (LDCDISP) acting on
a given degree of freedom (LDCDOF) on a specific node
(LDCGRID). All parameters are in the NXSTRAT entry. The
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direction of the displacement is given by its sign.

As shown in Fig. 6.2-1, the input for the initial enforced
displacement (in particular whether it is positive or negative) is
critical in establishing successive equilibrium positions using the
LDC method.

As an example, two entirely different solution paths will be
obtained for the same model shown in Fig. 6.2-1 if initial
displacements of different signs are enforced for the first solution
step.

0A

b,

X

Reference load = R, actual load at time t = AR
Enforced displacement for first step = A, displacement at time t = tA

a) Model considered

R A 0A specified positive
/\ .
-

0A specified negative

b) Equilibrium paths

Figure 6.2-1: Example of the dependence of solution path on the
displacement enforced in the first step for the LDC
method
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e After the first step, the program automatically traces the
nonlinear response by scaling the external load vector R
proportionally, subject to the constraint of Eq. (6.2-5), so that at
any discrete time  in iteration (i), the external load vector is ‘A”R.
The scaling of the reference load vector using ‘A is analogous to
the scaling of the applied loads R using a user predefined time
function when the LDC method is not used (see Chapter 5). In the
case of the LDC method, the scaling function is determined
internally by the program instead of being user-specified.

e The converged displacement must satisfy the following relation:

U], <100|

AtU”
2

where U =""*U~"U is the incremental displacement vector for
the current step, a is a displacement convergence input factor
(LDCIMAX parameter in NXSTRAT), and * U is the
displacement vector obtained in the first step. If the above

inequality is not satisfied, an internal restart of the iteration for the
current step is performed by the program.

e The LDC solution terminates normally when any one of the
following conditions is satisfied:

» The maximum specified displacement is reached
(LDCDMAX in NXSTRAT).

» A critical point on the equilibrium path has been passed. If
LDCCONT=1 in NXSTRAT is specified, this condition is
skipped.

» The number of converged solution steps is reached.

» The maximum number of subdivisions (LDCSUBD in
NXSTRAT) has been attempted using different strategies but
each time the solution has failed to converge within the number
of allowed iterations.
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6.2.7 Convergence criteria for equilibrium iterations

o The following convergence criteria can be specified in Solution
601 (via CONVCRI in NXSTRAT):

» energy only,

» energy and force/moment,

» energy and translation/rotation,

» force/moment only, and

» translation/rotation only.
e If contact is defined in an analysis, the contact force

convergence criterion is always used in addition to the above
criteria (see Chapter 4).

e The values of all convergence norms, whether used or not, are
provided in the .f06 file. For more details on the .f06 output format
see Section 6.2.9.

LDC method not used

e Ifthe LDC method is not used, the convergence in equilibrium
iterations is reached when the following inequalities are satisfied:

Energy convergence criterion
For all degrees of freedom:

AU(i)T I: t+AtR_t+AtF(i—l)}
AU(l)T [ t+AtR_tFi|

<ETOL (6.2-6)

where ETOL is a user-specified energy convergence tolerance.

Force and moment convergence criteria
For the translational degrees of freedom:

AR _t+AtF(i—1) ||
RNORM

2 <RTOL
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For the rotational degrees of freedom:

AR _t+AtF(i—l) ||
RMNORM

2 <RTOL

where RTOL is a user-specified force convergence tolerance,
RNORM and RMNORM are user-specified reference force and
moment norms. If left undefined the program automatically
determines RNORM and RMNORM during execution.

Translation/rotation convergence criteria
For the translational degrees of freedom:

L
DNORM

For the rotational degrees of freedom:

|av”],

——  —<DTOL

DMNORM
where DTOL is a user-specified force convergence tolerance,
DNORM and DMNORM are user-specified reference
displacement and rotation norms. If left undefined the program
automatically determines DNORM and DMNORM during
execution.

Note that in each of these convergence criteria the residual norm
is measured against a user-specified maximum residual value; for
example, the force criterion could be interpreted as

(norm of out-of-balance loads) < RTOL x RNORM

where RTOL x RNORM is equal to the user-specified maximum
allowed out-of-balance load.

Note also that these convergence criteria are used in each
subdivision of time or load step when the ATS method of
automatic step incrementation is used.
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o If contact is present in the analysis the following additional
criterion is always used in measuring convergence

ma (RO RV

A 36D ”2)
: ,RCONSM)

27

<RCTOL

max (||R§"*2)|

where Rf_l) is the contact force vector at the end of iteration
(i - 1) , A7 is the Lagrange multiplier vector at the end of iteration

(1' ) , RCONSM is a reference contact force level used to prevent

possible division by zero and RCTOL is a user-specified contact
force convergence tolerance.

Non-convergence: Convergence might not occur when the
maximum number of iterations is reached or when the solution is
diverging. The maximum number of iterations is set by MAXITE
in the NXSTRAT entry.

o If'the specified convergence criteria are not satisfied within the
allowed number of iterations, but the solution is not diverging, the

following can be attempted:

» Check the model according to the guidelines in Section
6.2.8.

» Use a smaller time step.

» Increase the number of allowable iterations.

» Change the ATS parameters.

» Change convergence tolerances. In most cases, looser
tolerances help. However, in some problems, tighter tolerances
help by not allowing approximate solutions that could

potentially prevent convergence in future time steps.

» Change line search. Some problems, such as those involving
plasticity, perform better with line search.
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» Change contact settings. The optimal contact settings and
features depend on the model. See Chapter 4 for more details.

¢ Divergence of solution terminates the iteration process before
the maximum number of iterations is reached. It is sometimes
detected when the energy convergence ratio in Eq. (6.2-6) becomes
unacceptably large, or when the excessive displacements lead to
distorted elements and negative Jacobians. In this case, the
following can be attempted:

» Check the model according to the guidelines in Section
6.2.8.

» Use a smaller time step.

» Make sure there are sufficient constraints to remove rigid
body modes from all components in the model. Presence of
rigid body modes usually results in a large ratio of maximum to
minimum pivot during factorization (with sparse solver).

LDC method used

e Convergence in the equilibrium iterations is reached when the
following inequalities are satisfied:

Energy convergence criterion: For all degrees of freedom

AU([)T I: A G-D R _t+AtF(i—l):|
AU [AAPR]

<ETOL

where ETOL is a user-specified energy convergence tolerance.

Force and moment convergence criteria: For the translational
degrees of freedom

z+At/1<i—1) R _t+AtF(i—l) ”
RNORM

2 <RTOL
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For the rotational degrees of freedom

z+At/1<i—1) R _t+AtF(i—l) ”
RMNORM

2 <RTOL

where RTOL is a user-specified force convergence tolerance,
RNORM and RMNORM are user-specified reference force and
moment norms. If left undefined the program automatically
determines RNORM and RMNORM during execution.

The translation/rotation convergence criteria, and the contact
convergence criterion, are the same as when the LDC method is not
used, see above.

Non-convergence: If convergence has not been reached from an
established equilibrium configuration after the maximum restart
attempts, the program saves the required restart information and
program execution is terminated.

The solution can be continued by performing a restart run. Note
that in this case the LDC method must be used in the restart run. A
different value for the initial displacement can be enforced at a
different nodal point in the first step of the restart run. The enforced
initial displacement then corresponds to a displacement increment
from the last converged equilibrium position, that is, at the time of
solution start for the restart analysis.

6.2.8 Selection of incremental solution method

o This section gives recommendations on which incremental
solution method to use for a given analysis.

e Every nonlinear analysis should be preceded by a linear
analysis, if only to check that the model has been set up correctly.
The linear analysis results will highlight many important factors
such as the proper application of boundary conditions, deletion of
all degrees of freedom without stiffness, the quality of the finite
element mesh, etc.

e Ifthe use of a sufficient number of load steps and equilibrium
iterations with tight convergence tolerances at each load step is
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considered to yield an accurate solution of the model, then the basic
aim is to obtain a response prediction close to this accurate one at
as small a solution cost as possible.

e It is helpful to know if the model softens or hardens under
increasing load. Structures can soften due to the spread of
plasticity, and they can soften or harden due to geometric nonlinear
effects. Contact usually leads to hardening. Fig. 6.2-2 shows some
examples.

¢ Displacement controlled loading generally converges faster than
force controlled loading. For example, in the model shown in  Fig.
6.2-2(b), applying an increasing tip displacement to the beam will
converge faster than an applied load P, and both will follow the
same load displacement curve. For the model in Fig. 6.2-2(c) force
control would fail past the local maximum on the load-
displacement curve. Displacement controlled loading (apply an
increasing A) would work in this case. Note that this case is also
suitable for the LDC method.

e When the ATS method is used, together with a reasonable time
step size, the ATS method will result in almost the same "iteration
path" as when not using the method. Namely, no step subdividing
will be performed if convergence is always directly reached at the
user-specified load levels.

Hence, in general, it is most convenient to use a reasonable
number of load steps together with the ATS method.

e If the problem involves localized buckling, or sudden changes
due to contact, or other discontinuities, consider using the low
speed dynamic feature. Make sure that the selected structural
damping is not excessive.

e The LDC method is useful if collapse of the structure occurs
during the (static) solution. It can also capture the post-collapse
response. Note, however, that the solution at a specific load or
displacement level cannot be obtained using the LDC method
because the load increments are automatically calculated by the
program.
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(a) Softening problem. Materially-nonlinear-only analysis,
elasto-plastic analysis of a cylinder

P

I —

>Y

(b) Stiffening problem. Large displacement nonlinear elastic
analysis of a cantilever

P

J' P

>Y

(c) Softening/stiffening problem. Large displacement analysis of a
thin arch

Figure 6.2-2: Different types of nonlinear analyses

¢ Note that usually it is quite adequate to employ the energy
convergence tolerance only. The need to use one of the other
convergence criteria arises when the energy convergence is not
tight (small) enough. In addition, there exist special loading
conditions under which the denominator of the inequality (6.2-6) in
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Section 6.2.7 becomes small and hence the inequality is difficult to
satisfy.

6.2.9 Example

This section presents a worked example that illustrates the
nonlinear iteration and convergence concepts previously discussed.
Figure 6.2-3 shows the iteration history for a load step. The
standard Newton method with line searches is used with the energy
and force convergence criterion (ETOL=1x1 0, RTOL=0.01,
RNORM=10.0, RMNORM =10.0). For contact RCTOL=1x10"
and the reference contact force RCONSM=0.01. For line search
STOL=0.01.

Row ITE=0: This row shows the result of the initial iteration
called iteration 0. For this iteration, the program performs the
following steps:

Compute "™ U ="U.

Compute " F” and “"“ K using MU .

Compute the out-of-balance force vector ™ R —"**F” . Only
considering translational degrees of freedom, the norm of the

AR AR ”2 =2.32x10° and

out-of-balance force vector is

the largest magnitude in the out-of-balance force vector is
-2.32x10° at the Z translational degree of freedom of node 740.
Only considering rotational degrees of freedom, the norm of the

t+A R _t+AtF(0) ” =3.27%107
2

out-of-balance force vector is

and the largest magnitude in the out-of-balance force vector is
-6.22x10™* at the Y rotational degree of freedom of node 319.
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Figure 6.2-3

Theory and Modeling Guide

Advanced Nonlinear Solution

318



6.2: Nonlinear static analysis

ITERATION TIME L OG

SOLUTION TIME (SECONDS) . . . . .« « « « « « v v o o v o o o . = 5.13
PERCENT OF TIME SPENT IN LINE SEARCHING . . . . . . . . . . . . . . = 54.00
PERCENT OF TIME SPENT IN LOAD VECTOR/STIFFNESS MATRIX CALCULATION . = 39.57
PERCENT OF TIME SPENT IN SOLUTION OF EQUATIONS . . . . . . . . . . = 6.43

6 EQUILIBRIUM ITERATIONS PERFORMED IN THIS TIME STEP TO REESTABLISH EQUILIBRIUM
STIFFNESS REFORMED FOR EVERY ITERATION OF THIS STEP
NUMBER OF SUBINCREMENTS IN THIS TIME STEP = 1

Figure 6.2-3: (continued)

Compute AU” using "K' YAU =R -"“F . Only
considering translational degrees of freedom, the norm of the

incremental displacement vector is ”AU(O) ”2 =4.79x10" and

the largest magnitude in the incremental displacement vector is
—1.14x107 at the Z displacement of node 159. Only considering
rotational degrees of freedom, the norm of the incremental

displacement vector is ”AU(O)”2 = 7.45%x10™" and the largest

magnitude in the incremental displacement vector is 1.64x10™!
at the Y rotation of node 239.

Compute the “out-of-balance energy”
AU (“MR-MFD) = 2.24x10°,

Compute the norm of the change in contact forces
CFORCE=4.74x10°, and the norm of the contact forces
CFNORM=4.11x10".

Compute the energy convergence criterion
AU(O)T ': AR _t+AtF(O):|

AU(O)T[HAtR_tF} = 1.00
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Compute the force and moment convergence criteria

AR HATR(0) ||
2 =2.32x10° and
RNORM
t+At t+Atgp(0)
R B F ||2 _ 3 27 -4
=3.27x10™.
RMNORM
Compute the contact convergence criterion
CFORCE =1.15x10°
max(CFNORM,RCONSM)

The energy convergence criterion is greater than ETOL, the force
convergence criterion is greater than RTOL and the contact
convergence criterion is greater than RCTOL. Therefore,
convergence is not satisfied.

Note that the displacement and rotation norms are also
substituted into the displacement convergence criterion, which

results in
[au®], :
—=-=6.92x10" and
DNORM
”AU(O)Hz =8.63x10"
DMNORM

Since DNORM and DMNORM are not provided by the user, they
are automatically estimated by the program. The above
displacement convergence values however are not used in
determining convergence.

Row ITE=1: This row shows the results of the first equilibrium
iteration. In this iteration, the program performs the following
steps:

Compute "™ UY = U + AU " F" and the line
AU(O)T [ AR _t+AtF(l)]

AU(O)T [ t+AtR_t+AtF(0)]

search ratio . This ratio turns out to
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be greater than STOL=0.01, so line search is performed for 3
steps and ends up with a line search energy ratio of 5.95x10™®

which is less than STOL, corresponding to 5" =0.999 .

Compute t+AtU(l) = H-At[](o) +ﬂ(l)AU(O) .

AR () g

Compute using , and compute "KW

Note that the stiffness matrix is updated since the standard
Newton method is used.

Compute the out-of-balance force vector ™ R —="*F" . Only
considering translational degrees of freedom, the norm of the
t+At R _t+AtF(l) ||2 — 1 96X 104

out-of-balance force vector is

and the largest magnitude in the out-of-balance force vector is
4.14x10’ at node 239 (X translation). Only considering
rotational degrees of freedom, the norm of the out of balance

force vector is || "R —"*MF" ”2 =9.93x10" and the largest

magnitude in the out-of-balance force vector is —2.37x10° at
node 39 (Y rotation).

Compute AU using "“KPAUY =4 R -"*F®" Only
considering translational degrees of freedom, the norm of the
incremental displacement vector is ”AU(I) ”2 =6.16x10* and
the largest magnitude in the incremental displacement vector is

1.52x10™* at node 239 (X translation). Only considering
rotational degrees of freedom, the norm of the incremental

displacement vector is ”AU(I) ”2 =2.03x10" and the largest

magnitude in the incremental displacement vector is 6.71x107
at node 279 (Y rotation).

Compute CFORCE=4.74x10° and CFNORM=5.26x10".

Compute the “out-of-balance energy”
AU (MR -YFD) =3.95x10"
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Compute the energy convergence criterion

AU(])T [ AR _t+AtF(1):|

- =1.77x10".
AU(]) I: t+Al‘R _tF]

Compute the force and moment convergence criteria

AR _t+AtF(l) ||
2 = 1.96x10° and
RNORM
AR AR ||
2 =9.93x107™".
RMNORM
Compute the contact convergence criterion
CFORCE =9.01x10™
max(CFNORM,RCONSM)

The energy convergence criterion is greater than
ETOL, the force convergence criterion is greater than RTOL, the
moment convergence criterion is greater than RTOL, and the
contact convergence criterion is greater than RCTOL. Therefore,
convergence is not satisfied.

The displacement convergence criterion is also evaluated for
informational purposes.

Row ITE=2: This row shows the results from the second
equilibrium iteration. This row is interpreted exactly as is row
ITE=1. The line search factor in this case is 4.84x10™" obtained in 5
line search iterations.

Again, none of the convergence criteria is satisfied. However,
they are all getting smaller.

Row ITE=3: This row shows the results from the third equilibrium
iteration. This row is interpreted exactly as is row ITE=2.
Again, none of the convergence criteria is satisfied.

Row ITE=4: This row shows the results from the fourth
equilibrium iteration. In this case, the previous increment of

displacement from the solver AU satisfies the line search energy
tolerance STOL so no line search is performed.
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t+At AU(4) =I+AtAU(3) +AU(3)

At the end of the that equilibrium iteration, the energy convergence
criterion is

AU(4)T [ AR _t+AtF(4):|
AU(4)T I: HAtR _tF:I

The force convergence value is 1.77x10° and the moment
convergence value is 1.35x107. The contact convergence value is
6.80x107.

Two of these four criteria (force and contact) are not satisfied,
so convergence is not satisfied.

=1.11x10" which is less than ETOL.

Row ITE=5: The row shows the results for the fifth equilibrium
iteration. Contact convergence criterion is now also satisfied
leaving only force convergence unsatisfied. The solution continues.

Row ITE=6: The row shows the results from the sixth equilibrium
iteration. In this case, all convergence criteria are satisfied and
convergence is reached.

6.3 Linear dynamic analysis

e Linear dynamic analysis in Solution 601 is performed by
implicit integration using the Newmark method or the Bathe-
composite method.

e The notation given below is used in the following sections in
the descriptions of the equilibrium equations:

M = constant mass matrix

C = constant damping matrix

K = constant stiffness matrix
‘R,""™R = external load vector applied at time ¢, t+At

‘F = nodal point force vector equivalent to the element

stresses at time ¢

'U,"™U = vectors of nodal point accelerations at time ¢, #+A¢
‘U,"™U = vectors of nodal point displacements at time ¢, t+A¢
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’ﬁ,t+A'fJ = vectors of nodal point velocities at time ¢, t+At

U = vector of nodal point displacement increments from
time ¢ to time /+A¢, i.e., U=""2U - "U.

e The governing equilibrium equations at time #+A¢ are given by
Mt+Atﬁ+Ct+AtU+Kt+AIU :l‘+AtR (6 3_1)

The procedures used in the time integration of the governing
equations for dynamic analysis are summarized in ref. KJB,
Chapter 9.

e The time integration of the governing equations can use the
Newmark method or the Bathe composite time integration method.
The method can be selected using TINTEG in the NXSTRAT
entry. The Newmark method is explained in ref. KJB., Section
9.2.4, and the Bathe composite method is explained in the
following paper.

ref.  K.J. Bathe, “Conserving Energy and Momentum in
Nonlinear Dynamics: A Simple Implicit Time
Integration Scheme” J. Computers and Structures, Vol.
85, Issue 7-8, pp. 437-445. (2007)

¢ In the Bathe composite method, the time increment Az is
divided into two, the displacements, velocities, and accelerations
are solved for at a time ¢ + yAt, where y € (0,1) using the standard
Newmark method. The y parameter is always set to 2 — V2=
0.5858 to keep the same effective stiffness matrix in the two
substeps and to avoid recalculating that matrix and refactorization.
In the second substep a 3-point Euler backward method is used to
solve for the displacements, velocities and accelerations at time ¢ +
At using the results at time 7 and 7 + yA? .

e The following assumptions are used in the Newmark method:

MU =0+ (1-6)'T+5 "0 |Ar (6.3-2)
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ref. KJB
Sections 9.2.4
and 9.4.4

HMU = U+ UAL+ K%—aj U+a “A’U} Af* (6.3-3)

where aand o are the Newmark time integration parameters.
This transforms Eq. (6.3-1) to

K HAtU — HAtli (6.3-4)

where

A

K=K+a4M+aqC (6.3-5)

R = R+M(a0 ‘U+a,'U+a, ’fJ)+C(a1 ‘U+a,'U+a; tﬁ)
(6.3-6)

and where aq, ay, ... , as are integration constants for the Newmark
method (see Ref. KJB, Section 9.2.4).

A similar procedure can be followed for the Bathe composite
time integration scheme.

e The trapezoidal rule (also called the constant-average-
acceleration method of Newmark) obtained by using 6 = 0.5,

o = 0.25 is recommended for linear dynamic analysis (when the
Newmark method is used).

o The trapezoidal rule has the following characteristics:

» It is an implicit integration method, meaning that equilibrium
of the system is considered at time 7+A¢ to obtain the solution at
time t+A¢.

» It is unconditionally stable. Hence, the time step size At is
selected based on accuracy considerations only, see ref. KJB,
Section 9.4.4.

e The Newmark method is in general stable when the following
constraints are satisfied: & > 0.5, a > 0.25(5 +0.5)".
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e Newmark parameters different from the trapezoidal rule can be
specified using ALPHA and DELTA in the NXSTRAT entry.
Other Newmark values can add some numerical damping for high
frequencies which is useful for some models.

e The Newmark method is usually more effective for structural
vibration problems. In these analyses, the use of higher-order
elements, just as in static analysis, and the use of a consistent mass
discretization can be effective.

e The time step increment (Af) recommended for dynamic
analysis with the Newmark method is given by @, At <0.20
where @, is the highest frequency of interest in the dynamic

response.

e Whether the mass and damping matrices are diagonal or banded
(lumped or consistent discretization), the solution always requires
that a coefficient matrix be assembled and factorized.

6.3.1 Mass matrix

e The mass matrix of the structure may be based on a lumped or
consistent mass calculation. The type of mass matrix to use is
selected with MASSTYP in the NXSTRAT entry.

e The consistent mass matrix for each element M is calculated
using

M = jp(i)H(i)TH(i)dV

where p'” is the density, and H"” is the displacement
interpolation matrix specific to the element type.

e The construction of the lumped mass matrix depends on the
type of element used. Each of the elements in Chapter 2 detail how
its lumped mass matrix is calculated. For elements with
translational degrees of freedom only, the total mass of the element
is divided equally among its nodes.
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6.3.2 Damping

ref. KJ8 ® Damping can be added directly to the model through Rayleigh
Section 9.3.3  damping. Additional indirect damping results from the selected
time integration parameters, plasticity and friction.

e If Rayleigh damping is specified, the contributions of the
following matrix (C Ray,eigh) are added to the total system damping

matrix C described in Section 6.3:

C =aM+ K

Rayleigh
where M is the total system mass matrix which can be lumped or

consistent, and K is the total system stiffness matrix. & and S are
specified through the entry PARAM, ALPHA1, ALPHA?2.

e See Ref. KJB, Section 9.3.3, for information about selecting the
Rayleigh damping constants a, £. In the modal basis, the damping
ratio can be written as

g = o
20, 2

where & is the damping ratio for mode @, . It is clear that « tends
to damp lower modes and £ tends to damp higher modes.

T
If & is not used, then a value of 8 =—% will overdamp all
T

motions with periods smaller than T , - Hence motions with periods

T
smaller than 7, can be suppressed by choosing S =—L. This may
s

be of interest when using damping to suppress numerical
oscillations.

The above comments apply only when the stiffness matrix does
not change significantly during the analysis, however.
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6.4 Nonlinear dynamic analysis

ref. KJB
Section 9.5

e Nonlinear dynamic analysis in Solution 601 is performed by
direct implicit integration using the Newmark method or the Bathe
composite time integration method, similar to linear dynamic
analysis.

¢ The use of Rayleigh damping (C Rayleigh) is the same as
described in Section 6.3.2. In this case, the total mass matrix and
the initial total stiffness matrix are used to evaluate the Rayleigh
damping matrix.

o Since Cy, . is constant throughout the solution, it is formed

only once in Solution 601, before the step-by-step solution of the
equilibrium equations.

o The governing equations at time ¢ + Af are

M t+AtU(i) +C t+AtU([) + t+AtK AU(:‘) :t+AtR _t+AtF(i—1)

where “AU®, U9 AU L AU are the approximations
to the accelerations, velocities, and displacements obtained in
iteration (7) respectively.

The vector of nodal point forces is equivalent to the
element stresses in the configuration corresponding to the
displacements U,

A GD)

e The trapezoidal rule obtained by using 6 = 0.5 and a = 0.25 is
recommended if the Newmark method is used.

¢ In the Bathe composite method the time increment At is divided
into two substeps. In the first substep, the displacements, velocities,
accelerations are solved for at a time ¢ + yAt, where y = 0.5, using
the standard Newmark method. In the second substep, a 3-point
Euler backward method is used to solve for the displacements,
velocities, accelerations at time 7 + A¢, using the results at both time
tand ¢ + yAt.
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For large deformation problems, the Newmark method can
become unstable, while the Bathe composite scheme remains
stable. However, for a given time step size, the scheme is about
twice as expensive computationally as the Newmark method due to
the extra solution step at time ¢ + yAt.

e The dynamic equilibrium equations are solved using the same
iterative procedures used in static analysis, including the ATS
method and line search, see Sections 6.2.1 and 6.2.2 for more
details. However, the LDC method cannot be used in dynamics.

¢ The energy and force/moment convergence criteria used in
nonlinear dynamic analysis are:

Energy convergence criterion
For all degrees of freedom:

AU(i)T [ HAR M t+AtI"J(i—1) _C t+AtU(i—1) _t+AtF(i—1):|
AU(I)T I: HAtR -M t+At["J(0) e t+AtU(0) _tF:I

<ETOL

Force and moment convergence criteria
For the translational degrees of freedom:

HAMR M t+AttI(i—1) e t+AtU(i—1) _ A1) ||
RNORM

2 <RTOL

For the rotational degrees of freedom:

AR M t+At]'j(i—l) -C t+AtU(i—1) _t+AtF(i—l) ”
RMNORM

2 <RTOL

The other convergence criteria and the notation and considerations
for the use of the convergence criteria are the same as in nonlinear
static analysis; see Sections 6.2.7 and 6.2.8.

¢ In dynamic analysis the solution is sensitive to the time step
size. Using a large step leads to inaccurate time integration
regardless of the tightness of the convergence tolerances.
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6.5 Solvers

Three solvers are available in Solution 601. These are the direct
sparse solver (default), the iterative multi-grid solver and the 3D-
iterative solver. The SOLVER parameter in the NXSTRAT entry is
used to select which solver to use. Details on parallel processing
can be found in Section 10.8.

The spare solver is the only choice for heat transfer analysis.

6.5.1 Direct sparse solver

o The direct solution method in Solution 601 is a sparse matrix
solver. A hybrid ordering scheme of the nested dissection and the
minimum degree algorithms is used to greatly reduce the amount of
storage required and the total number of operations performed in
the solution of the equations.

o The sparse matrix solver is very reliable and robust and should
generally be used for most problems in Solution 601. It is the
default solver.

o The sparse solver memory is separate from that memory
allocated by the rest of the program. It is also dynamically allocated
by the solver as needed. The total memory allocated by the Nastran
program for Solution 601 covers both the program’s memory and
the solver’s memory.

o The sparse solver can be used both in-core and out-of-core. It is
more efficient to run an out-of-core sparse solver using real
(physical) memory than it is to run an in-core sparse solver using
virtual memory. Therefore, for large problems, we recommend
increasing the memory size (via the Nastran command) until it fits
the problem in-core, or it reaches approximately 85% of the real
memory.

e When a non-positive definite stiffness matrix (i.e. one with a
zero or negative diagonal element) is encountered during solution,
the program may stop or continue, according to the following rules:
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» If a diagonal element is exactly equal to 0.0, Solution 601
stops unless

- The equation number corresponding to the zero diagonal
element is only attached to inactive elements (elements
that are dead due to rupture or the element death feature).

- The user requested that Solution 601 continue execution
using the NPOSIT flag in the NXSTRAT entry.

» If the value of a diagonal element is smaller than 10" but
not equal to zero, or the value of a diagonal element is negative,
Solution 601 stops unless one of the following options is used:

Automatic load-displacement (LDC)

Automatic time-stepping (ATS)

Contact analysis

The user requested that Solution 601 continue execution
using the NPOSIT flag in the NXSTRAT entry.

e  When Solution 601 stops, it prints informational messages for
the zero or negative diagonal elements.

e  When Solution 601 continues execution and the diagonal
element is smaller than 10 it assigns a very large number to the
diagonal element, effectively attaching a very stiff spring to that
degree of freedom.

¢ Note that the stiffness matrix can be non-positive definite due to
a modeling error, for example if the model is not sufficiently
restrained in static analysis. In this case the results obtained can be
misleading.

6.5.2 Iterative multi-grid solver
e In the analysis of very large problems, the amount of storage

required by a direct solution solver may be too large for the
available computer resources. For such problems, the use of the
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iterative method of solution is necessary.

e The multi-grid solver available in Solution 601 is an algebraic
solver, and can be used with all solution options of Solution 601.

e The multi-grid solver is sensitive to the conditioning of the
coefficient matrix. It generally performs better (requires fewer
solver iterations) for well-conditioned problems. Ill-conditioned
problems may require a large number of iterations or may not
converge at all. The maximum number of iterations is set by
ITEMAX in the NXSTRAT entry.

¢ The conditioning sensitivity of the multi-grid solver makes it
more suited for bulky 3-D solid models compared to thin structural
models where the membrane stiffness is much higher than the
bending stiffness. It also makes it more efficient in dynamic
analysis (compared to static), because of the stabilizing effect of
the mass matrix (inertia effect) on the coefficient matrix.

e Note that the multi-grid solver cannot recognize that the
stiffness matrix is singular. For such problems, the solver will
iterate without converging.

e The multi-grid solver is sometimes also less efficient for
problems with

displacement coordinate systems that vary significantly
along the model

a large number of rigid elements or constraint equations

a large number of rod or beam elements

some contact problems.

In such cases, the 3D-iterative solver might be used, see Section
6.5.3.

¢ The main practical differences between the use of the direct
solver and the multi-grid solver are as follows:
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» The direct solver executes a predetermined number of
operations after which the solution is obtained. It is less
sensitive to the conditioning of the coefficient matrix.

» The multi-grid solver performs a predetermined number of
operations per iteration, but the number of iterations is not
known beforehand. The number of iterations depends on the
condition number of the coefficient matrix. The higher the
condition number, the more iterations are needed. The number
of iterations required varies from a few hundred to a few
thousand.

¢ Regarding the convergence of the multi-grid method, assume
that the system of equations to be solved is Ax=b, D is the

diagonal vector of A, N is the dimension of x, x*) is the
approximate solution at solver iteration &, and the residual vector is

r'’ =b— Ax"*) . We can define:

oA o] .

RDB® — ”x”‘) — %D

2

2

RDC® =[x

2 b

RDR = min(RDA”‘) /RDA™, RDB" | RDB" ) and
RDX = RDB"™ /| RDC",

The multi-grid method converges when one of the following
criteria is reached:

RDA"™ < EPSIL, and RDX < EPSB,

RDA"™ <EPSA, RDR < EPSB, and RDX < EPSB,
RDR < EPSA, and RDX < EPSB,

max|x<k> —x<"‘”| < EPSII*0.1

where EPSIA, EPSIB, and EPSII are convergence tolerances set
via the NXSTRAT entry. The defaults are EPSIA =107,
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EPSIB=10"*, EPSII =10"". However, for nonlinear analysis
with equilibrium iterations, looser tolerances can be used.

6.5.3 3D-iterative solver

e The 3D-iterative solver has been developed to efficiently solve
large models containing mainly higher order 3-D solid elements
(e.g., 10-node CTETRA, 20-node CHEXA, etc.).

e The 3D-iterative solver is invoked if SOLVER=2 in the
NXSTRAT entry.

¢ In addition to the higher order 3-D solid elements, the models
can contain other elements available in the program (e.g., shells,
rods, beams, rebars, etc.), including contact conditions.

e The 3D-iterative solver is effective in linear or nonlinear static
analysis and in nonlinear dynamic analysis. For linear dynamic
analysis, the sparse solver is usually more effective.

e The 3D-iterative solver, like all iterative solvers, performs a
number of iterations until convergence is reached. The maximum
number of iterations is set by ITEMAX in the NXSTRAT entry.

e Nearly incompressible hyperelastic materials may slow down
the convergence of the 3D-iterative solver. For these material
models, the bulk modulus x should be restricted to a value

corresponding to v= 0.49, instead of the default 0.499 (see Eq.
3.7-7)

e Convergence control in the 3D-iterative solver is as follows:
Considering the linearized equation Ax = b, let x' be its

approximate solution at inner-iteration i and 7' (: b— Axi) be its

corresponding residual. The convergence in the iterative solver is
said obtained if any one of the following criteria is satisfied

. o
||b||§€0 or ”r’”ﬁso or ”x’—x’ ||§50
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or equation residual: ”ri”/rscale < {0'00106 l <3
o i>3

e

or solution residual: ”xi —x! ” / Xpate < {O'OOIUV l <
o i>3

v

The solution norm is defined as ||x|| = %ZT |xl.| . In the above,

=[P

, and the variable scale

€ = 107'°, the equation scale ¥ale

max {60 : (”x1 ” + ”x2 ” + ”x3 ”)} for linear problems
),

where Ax="U — U, x' = AU" is the current solution
increment in the Newton-Raphson iteration i, o, = EPSIB of the
NXSTRAT entry, and &, = min(10°¢, 6,-107).

scale —

max {eo,é(“xl ||-l—||xz||-|—||x3 Ax”} for nonlinear problems

The equation residual (EQ) and the solution residual (VAR) are
written to the .f06 file.

6.6 Tracking solution progress

¢ Important model parameters such as the memory used by the
model, memory used by the solver, number of degrees of freedom,
solution times, warning messages, and error messages are all
provided in the .f06 file.

¢ Detailed iteration by iteration convergence information is also
written to the .f06 file as illustrated in the example of Section 6.2.9.

e The program outputs a more summarized time step information
to the .log file. This outputs focuses on the time steps and the ATS
history.

e The program terminates when the final solution time is reached
or when it cannot reach a converged solution. The user can also
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terminate the program during execution. This can be done
gracefully by creating a runtime option file “tmpadvnlin.rto” with a
line “STOP=1". This forces the program to stop after cleaning up
all temporary and results files. This method is more useful than
“killing” the solution process if the results at the previously
converged times steps are needed.

e Several NXSTRAT solution parameters can be modified during
execution via the runtime option file “tmpadvnlin.rto”. The
NXSTRAT parameters that can be modified are MAXITE, DTOL,
ETOL, RCTOL, RTOL, STOL, RCONSM, RNORM, RMNORM,
DNORM, and DMNORM. Only one parameter can be specified in
each line of the .rto file.
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7. Explicit dynamic analysis

This chapter presents the formulations and algorithms used to solve
explicit dynamic problems using Solution 701 including time step
calculation. Most flags or constants that need to be input in this
chapter are in the NXSTRAT bulk data entry. The elements and
material properties available for explicit analysis with Solution
701 are listed in Table 2-3.

Information about the progress of the solution is always output
to the .f06 file. A shorter summarized output is provided in the .log
file.

7.1 Formulation

The central difference method (CDM) is used for time integration
in explicit analysis (see ref. KJB, Section 9.2.1). In this case, it is
assumed that

28 1 t—At t t+At
U:F( YU-2'U+""U) (7.1-1)

and the velocity is calculated using

_ ﬁ(_wu +v) (7.1-2)

‘U
The governing equilibrium equation at time ¢ is given by

M'U+C'U=R-'F (7.1-3)

Substituting the relations for "Uand 'Uin Eq. (7.1-1) and (7.1-2),
respectively, into Eq. (7.1-3), we obtain

(LZM+LC)’+MU =’R—fF+izM fU—(LZM +Lcjf‘A’U
At 2At At At 2At

(7.1-4)

. Al
from which we can solve for U .
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ref. KJB

Sections 9.2.1,

9.4and 9.5.1

e The central difference method has the following characteristics:

» It is an explicit integration method, meaning that equilibrium
of the finite element system is considered at time ¢ to obtain the
solution at time ¢+A¢.

» When the mass and damping matrices are diagonal, no
coefficient matrix needs to be factorized, see ref. KIB, p. 772.
The use of the central difference method is only effective when
this condition is satisfied. Therefore, only lumped mass can be
used in Solution 701. Also damping can only be mass-
proportional.

» No degree of freedom should have zero mass. This will lead
to a singularity in the calculation of displacements according to
Eq. 7.1-4, and will also result in a zero stable time step.

» The central difference method is conditionally stable. The
time step size At is governed by the following criterion

T, .
Af S AtCR — Nmin
T

where Af, is the critical time step size, and Ty, is the
smallest period in the finite element mesh.

e The central difference method is most effective when low-order
elements are employed. Hence quadratic 3-D solid and shell
elements are not allowed.

e The time step in Solution 701 can be specified by the user, or
calculated automatically (via the XSTEP parameter in NXSTRAT).
When the user specifies the time, Solution 701 does not perform
any stability checking. It is the user’s responsibility, in this case, to
ensure that an appropriate stable time step is used.

e When automatic time step calculation is selected, the TSTEP
entry is only used to determine the number of nominal time steps
and the frequency of output of results. The stable time step is used
instead of the value in TSTEP (unless the value in TSTEP is
smaller).
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For example, if the following TSTEP entry is used
TSTEP, 1, 12, 1.0, 4

there will be 12 nominal steps each of size 1.0. If the stable time
step is smaller than 1.0 it will be used instead and results will be
saved as soon as the solution time exceeds 4.0, 8.0 and exactly at
12.0 since it is the last step of the analysis.

7.1.1 Mass matrix

e The construction of the lumped mass matrix depends on the
type of element used. Details are provided in the appropriate
section in Chapter 2.

For elements with translational degrees of freedom only, the
total mass of the element is divided equally among its nodes. For
elements with rotational masses (beam and shell elements), the
lumping procedure is element dependent.

Note that the lumping of rotational degrees of freedom is
slightly different in implicit and explicit analysis. The rotational
masses in explicit analysis are sometimes scaled up so that they do
not affect the element’s critical time step.

7.1.2 Damping

e Damping can be added directly to the model through Rayleigh
damping. Additional indirect damping results from plasticity,
friction and rate dependent penalty contact.

e Only mass-proportional Rayleigh damping is available in
explicit analysis. Hence, the damping matrix C in Eq. 6.3-1 is set
to:

C =aM

Rayleigh

where M is the total lumped mass matrix.
See Ref. KJB, Section 9.3.3, for information about selecting
the Rayleigh damping constant a.
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Section 9.4.2

7.2 Stability

e The stable time step for a single degree of freedom with central
difference time integration is

T, 2
At =2 =—
T @y

The stable time step for a finite element assembly is

where ® is the highest natural frequency of the system, which

N max
is bound by the highest natural frequency of all individual elements
in a model ®,, . (see Ref. KIB, Example 9.13, p. 815).

e When automatic time step is selected, the time step size is
determined according to the following relationship

2

At=KxAt, . =Kx

E min

(7.2-1)
w

E'max

where K is a factor (set via the XDTFAC parameter in NXSTRAT)
that scales the time step.

¢ For most element types the critical time step can be expressed in
terms of a characteristic length and a material wave speed
L
At, =— (7.2-2)
c

where the definition of the length L and the wave speed ¢ depend
on the element and material type. For all elastic-plastic materials
the elastic wave is used. This condition is used in Solution 701
instead of actually evaluating the natural frequency in Eq. (7.2-1).
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e Note that the critical time step calculated for all elements is only
an estimate . For some elements and material combinations it is
exact, and for others it is slightly conservative. However, it may
not be small enough for excessively distorted elements (3-D solid
and shells), and it will therefore need scaling using K factor in Eq
(7.2-1).

e The time step also changes with deformation, due to the change
in the geometry of the elements and the change in the wave speed
through the element (resulting from a change in the material
properties).

Rod elements
The critical time step for a 2-node rod element is

L
At ==
C

where L is the length of the element, and c is the wave speed
through the element

E
c= |—
Yo,

Beam elements
The critical time step for the (Hermitian) beam element is

L 121
At, =—/[1+—
c AL
where L is the length of the element, A is the element area, I is the
largest moment of inertia, and c is the wave speed through the

element

E
c=,|—
P
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Shell elements
The critical time step for shell elements is

L
At, ==
c

where L is a characteristic length of the element based on its area
and the length of its sides, and c is the planar wave speed through
the shell, which for linear isotropic elastic materials is

E
c= |——
\ p(1=v?)

The critical time step estimated here is only approximate, and may
be too large for excessively distorted shell elements.

3-D solid elements
The critical time step for the 3-D solid elements is

L
At, ==
C

where L is a characteristic length of the element, based on its
volume and the area of its sides, and c is the wave speed through
the element. For linear isotropic elastic materials ¢ is given as

oo E(1-v)
pl+v)(1-2v)
The critical time step estimated here is only approximate, and may
be too large for excessively distorted 3-D solid elements.

Spring elements
The critical time step for a spring element is

= 2o [,
@y KM, +M,)
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where M, and M, are the masses of the two spring nodes and K is
its stiffness. Massless springs are not taken into account in the
calculation of the stable time step.

R-type elements
These elements are perfectly rigid and therefore do not affect the
stability of explicit analysis.

Gap and Bushing elements
These elements use the same criterion as spring element.

7.3 Time step management

e The stable time step size has a major influence on the total
simulation time. Since this time step is determined based on the
highest eigenvalue of the smallest element, a single small or
excessively distorted element could considerably increase the
solution time, even if this element is not relevant to the full model.

Note that the element having the smallest critical time step size
is always provided in the output file.

o Ideally, all elements should have similar critical time steps. If
the material properties are uniform throughout the model this
means that elements should approximately have the same lengths
(see Eq. 7.2-2).

e The evaluation of the critical time step for each element takes
some computational time. Therefore, it does not need to be
performed at every time step. The parameter XDTCAL in
NXSTRAT determines how frequently the critical time step is
reevaluated.

o The time step size for explicit analysis can be unduly small for a
realistic solution time. Three features are provided to deal with this
problem.

e A global mass scaling variable can be applied to all elements in
the model (the XMSCALE parameter in NXSTRAT). This scale
factor is applied to the densities of all elements, except scalar
elements where it is applied directly to their mass.
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e Mass scaling can also be applied to elements whose
automatically calculated initial time step is below a certain value
(XDTMINI1 parameter in NXSTRAT). A mass scale factor is then
applied to these elements to make their time steps reach
XDTMINI. The mass scaling ratio is then held constant for the
duration of the analysis.

¢ Elements with automatically calculated time step smaller than a
specified value (XDTMIN2 parameter in NXSTRAT) can be
completely removed from the model. This parameter is useful for
extremely small or distorted elements that do not affect the rest of
the model.

o The three parameters explained above (XMSCALE, XDTMIN1
and XDTMIN?2) should all be used with great care to ensure that
the accuracy of the analysis is not significantly compromised.

7.4 Tracking solution progress

e Important model parameters such as the memory used by the
model, number of degrees of freedom, solution times, minimum
stable time step, warning and error messages are all provided in the
106 file.

e The program outputs a more summarized time step information
to the .log file.

e The program terminates when the final solution time is reached
or when it cannot reach a converged solution. The user can also
terminate the program during execution. This can be done
gracefully by creating a runtime option file “tmpadvnlin.rto” with a
line “STOP=1". This forces the program to stop after cleaning up
all temporary and results files. This method is more useful than
“killing” the solution process if the results at the previously
converged times steps are needed.
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8. Heat transfer analysis (Solution 601 only)

8.1 Formulation

e For heat transfer in a body, we assume that the material of the

ref. KIB . . .
Section 7.2.1 body obeys Fourier's law of heat conduction, i.e.,
0o
g=-k""
Ox

where

g = heat flux (heat flow conducted per unit area)
6 = temperature
k = thermal conductivity (material property)

e The law states that the heat flux is proportional to the
temperature gradient, the constant of proportionality being the
thermal conductivity, k, of the material. The minus sign indicates
the physical fact that a positive heat flux along direction ‘x’ is given
by a drop in temperature € in that direction 068/0x < 0.

Consider a three-dimensional solid body as shown in Fig. 8.1-1.
In the principal axis directions x, y, and z we have

00

00 , 09

qx xax’ qy _yg’ qz _ZE

where ¢,,q,,q. and k_,k,,k_ are the heat fluxes and

conductivities in the principal axis directions. Equilibrium of heat
flow in the interior of the body thus gives

9 kr% 2 k 901, 9 kzﬁ =—q"  (8.1-1)
ox\ "ox ) oyl "oy) oz\ "oz

where qB is the rate of heat generated per unit volume.
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Figure 8.1-1: Body subjected to heat transfer

e At the boundaries of the body one of the following conditions
must be satisfied:

6, =6, (8.1-2)
kn% =q° (8.1-3)
on 5

where 6, is the external surface temperature (on surface S)), &, is
the body thermal conductivity in the direction n of the outward
normal to the surface, and qS is the heat flow input to the body

across surface S,. This quantity may be constant or a function of
temperature as in the case of convection and radiation boundary
conditions.

e The governing principle of virtual temperatures corresponding
to the above equation can be found in Section 7.2.1 of ref. KJB.
The incremental form of the equations is provided in Section 7.2.2,
and the discretized finite element equations are provided in Section
7.2.3.
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e Note that any region of the boundary where no boundary
conditions or loads are explicitly applied is assumed, by virtue of
the formulation, to have

g’ =0

This implies that the boundary is insulated, allowing no heat
transfer across it.

e Note that a time-dependent temperature distribution has not
been considered in the above equations — i.e., steady-state
conditions have been assumed. For transient problems the heat
stored within the material is given by

g  =cpb (8.1-4)

where c is the material specific heat capacity and p is the density.

qc can be interpreted as forming part of the heat generation term

B .
q ,ie.,

q* =G —cpb (8.1-5)
where q~B does not include any heat capacity effect.

e Note that all terms involving stored heat always involve the
product cp . Hence, it is an acceptable modeling technique to set p
to 1.0 and c to the heat capacity per unit volume (instead of the
specific heat).

8.2 Loads, boundary conditions, and initial conditions

o In heat transfer analysis loads and boundary conditions can be
ref. KIB specified. More details on these loads and boundary conditions are
Section 7.2.1 provided in Chapter 5.

e In all cases, the heat flux or heat generated are converted to
nodal heat fluxes by consistent integration of the finite element
load vector over the domain of the load application. See ref. KJB
Section 7.2.3 for details.
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Temperature conditions: The temperature is prescribed on the
boundary denoted by S in equation (8.1-2).

Heat flow conditions: The heat flow input is prescribed on the
boundary denoted by S, in equation (8.1-3).

Convection boundary conditions: The heat flow input is
specified on the boundary denoted by S, in (8.1-3) according to the
following convection condition

q° =h(6,-6°) (8.2-1)

with % being the convection coefficient (possibly temperature
dependent), 6, the ambient (external) temperature, and 6° the

body surface temperature.

Radiation boundary conditions: The heat flow input is specified
on the boundary denoted by S, in (8.1-3) according to the following
radiation condition

g = afe(ej‘ (6 )4) (8.2-2)

where o is the Stefan-Boltzmann constant, f'is a view factor or

shape factor, e is the material emissivity, 6. is the temperature of
the radiative source (or sink) and @° is the unknown body surface
temperature. Both temperatures are in the absolute scale. Note that

in the above equation the absorptivity is assumed to be equal to the
emissivity.

Internal heat generation: Internal heat is generated inside the
body. This is introduced as the qB term in equation (8.1-1).

Initial conditions: For a transient analysis the temperature
distribution at the start of the analysis must be specified.
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8.3 Steady state analysis

e For a steady-state problem there is no heat capacity effect, i.e.,

the time derivative term @ does not appear in the governing
equation system. See Section 7.2 of ref. KJB for more details.

e Time becomes a dummy variable which is used to indicate
different load levels in an incremental load analysis (just as in static
structural analysis).

e In linear thermal analysis, the finite element system of equations
to be solved is

A

K0=Q (8.3-1)

where K is the effective conductance matrix and Q is the nodal
heat flow vector from all thermal load sources.

e In nonlinear thermal analysis, the finite element system of
equations to be solved at iteration i of time step ¢ + At is

H.A;I"((i—l)Ae(i) _ t+AtQ . t+AtQ(Ii—1) (8.3-2)

where "' K" is the effective conductance matrix with
contributions from thermal conduction, boundary convection and
radiation, “"*'Q is the nodal heat flow vector with contributions
from all thermal load sources such as convection, radiation,
boundary heat flux and internal heat generation and " Q ,H) is the
internal heat flow vector corresponding to the element
temperatures.

The temperatures are then updated as

[+A[0(i) _ t+At0(i—1) +A9(l) (8.3-3)

These two equations correspond to the full Newton method without
line search.
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e In the full Newton method, the effective conductance matrix is
updated every iteration, and in the modified Newton method, the
conductance matrix is only updated every time step. The selection
of the full or modified Newton method is controlled by the
ITSCHEM parameter in the TMCPARA entry, with full Newton as
the default.

e Ifline search is used, Equation (8.3-3) is replaced by
rraigll) = rranglil) 4 ,B(i)AO(i) (8.3-4)

where a line search scaling factor is obtained from a line search in

the direction of Aﬂ(i) in order to reduce out-of-balance residuals
according to the following criterion

A(_)(z‘)T |:t+AtQ B t+AtQ(1i):|

Aﬁ(i)T |:”A’Q _ t+AtQ(1i—1):| <TOL

where TOL is a hard-coded tolerance equal to 5 x 107, and the
magnitude of £ is bounded as follows

0.001< £<38.0

Line search is off by default, and it is activated via the
LSEARCH parameter in the TMCPARA entry.

e The size of the time step increment should be carefully selected
in nonlinear heat transfer analysis. If a time step is too large the
equilibrium iterations may not converge; on the other hand, too
small a time step may result in many more increments being
required to reach the desired load level than are necessary.

8.4 Transient analysis

e For a transient analysis, the effect of heat capacity is included in

the governing equation system; thus the time derivative, &, term
appears in the equations.
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e In linear transient thermal analysis, the finite element system of
equations to be solved is

CO+K0=Q
where C is the heat capacity matrix.

e The heat matrix can be calculated as lumped or consistent (set
via the HEATCAP flag in the TMCPARA entry).

e In nonlinear transient thermal analysis, the finite element system
of equations to be solved is

t+AtC(i—1)0(i) +z+AtK(i—1)A0(i) _ z+AtQ _ t+AtQ(1i—1)

e Both full or modified Newton methods can be used, and line
search can also be used, as explained in the previous section.

e The time integration of the governing equations can be
performed using one of three available time integration schemes:
the Euler backward method, the trapezoidal rule, or the Bathe
composite time integration method. The time integration scheme is
controlled by the TINTEG parameter of the TMCPARA entry. All
three methods are implicit. Explicit analysis is not supported for
heat transfer problems.

8.5 Choice of time step and mesh size

ref. KJB e The choice of time step size At is important; if Az is too large
Section 9.6.1 then the equilibrium iteration process may not converge for
nonlinear problems. For transient problems, the accuracy will also
be sacrificed with an excessively large time step. On the other
hand, too small a time step may result in extra effort unnecessarily
being made to reach a given accuracy.

Therefore it is useful to provide some guidelines as to the choice
of time step size Az. We would like to use as large a time step as the
accuracy/stability/convergence conditions allow. Thus the
guidelines are phrased as upper limits on the time step size A¢, i.e.

Advanced Nonlinear Solution — Theory and Modeling Guide 351



Chapter 8: Heat transfer analysis

At< AL

o Consider the governing differential equation for constant
thermal conductivity and heat capacity in one dimension
(extrapolation to higher dimension is possible)

Pt " ox

Non-dimensionalizing this equation, we use

0-6,

0=
q,L/k

? t ~ X
. L . 322
b z— b L
where 6, is the initial temperature, 7 a characteristic time, L a

characteristic length, and ¢, a characteristic heat flux input. This
yields the equation

90 _a 2%
of I’ ox’

k. o s .
where a =— is the thermal diffusivity. We take the characteristic
cp

time to be

giving the dimensionless time 7 and the dimensionless Fourier
number £
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This number gives the ratio of the rate of heat transferred by
conduction to the rate of heat stored in the medium.
To obtain a time step value, a related parameter is introduced

where Ax is a measure of the element size. Thus, given an element
size Ax and a value of F{, a time step size can be determined. The

recommended value of FOA given below comes from stability and

accuracy considerations. However, since all available time
integration schemes are implicit, accuracy becomes the primary

consideration.
o Setting
F, <1
or equivalently
2
a2
a

gives reasonably accurate solutions (again, overall solution
accuracy depends on the "mesh size" Ax). The minimum value of

(Ax)’

a
"element size" Ax is taken, for low or high-order elements, as the
minimum distance between any two adjacent corner nodes of the
element.

over all the elements of the mesh should be employed. The

e To provide guidelines for the choice of element size Ax, we
consider the case of a semi-infinite solid initially at a uniform
temperature, whose surface is subjected to heating (or cooling) by
applying a constant temperature or constant heat-flux boundary
condition.

We define a "penetration depth", y, which represents the
distance into the solid at which 99.9% of the temperature change
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has occurred at a time ¢. For the above posed problem, which has
an analytical solution, we have

7/:4\/5

where a is the thermal diffusivity. Thus the penetration zone of the
domain must have a sufficient number of elements to model the
spatial temperature variation, but beyond that zone larger elements
can be used without loss of accuracy.

Since the penetration zone increases with time, we define a time
tmin Which is the minimum ‘time of interest’ of the problem. ¢,,;, may
be the first time at which the temperature distribution over the
domain is required, or the minimum time at which discrete
temperature measurements are required.

Given this time ¢,,;, we divide the penetration zone into a
number of elements, e.g., for a one-dimensional model, such that

A)CSi at
N

min

Usually N = 10 gives an effective resolution of the penetration zone
for a variety of boundary conditions and time integration schemes
1e.,

AxS%Jatmm

e Note that for a given (large) ¢,.,, the element size upper bound
may be greater than the physical dimensions of the problem. In this
case it is obvious that the element size must be significantly
reduced.

e Although consideration was given to one-dimensional problems
only, the generalization of Ax to two- and three-dimensional
problems has been shown to be valid. Hence the above element size
can also be used for two- and three-dimensional problems.

e In coupled TMC analysis the element size will frequently be
governed by the structural model. The same will frequently also
apply to the time step size (for iterative TMC coupling).
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8.6 Automatic time stepping method

o The heat transfer automatic-time-stepping (ATS) method can be
used to vary the time step size in order to obtain a converged
solution. It is set via the AUTO parameter in the TMCPARA entry.
If there in no convergence with the user-specified time step, the
program automatically subdivides the time step.

e Further subdivision can be done until convergence is reached or
the time step size becomes smaller than a minimum value. This
minimum value is set as the original time step size divided by a
scaling factor provided by the user (ATSSUBD in TMCPARA).

e This automatic time stepping procedure is used in the solution
of heat transfer analyses and one-way coupled TMC (thermo-
mechanically coupled) analyses. For iteratively coupled TMC
analyses the structural ATS procedure of Section 6.2.4 is used
instead. Note that the structural ATS procedure has many more
features, and is better suited for nonlinear problems involving
contact, geometric and material structural nonlinearities.
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9. Coupled thermo-mechanical analysis (Solution 601

only)

ref. KJB
Section 7.3

e Advanced Nonlinear Solution can handle two forms of coupling
between thermal (heat transfer) and structural analyses (COUP
parameter in TMCPARA entry).

e The first is one-way coupling, where the thermal solution
affects the structural solution, but the structural solution does not
affect the thermal solution.

e The second is iterative coupling which is a two-way coupling
where both the thermal and structural solutions are interdependent.

e TMC coupling can involve any combination of static or implicit
dynamic structural analysis, and steady state or transient heat
transfer analysis. This feature is useful due to the potential for
different physical time scales between the structural and heat
transfer models.

The settings needed for each combination are listed below
(TRANOPT parameter is in TMCPARA entry).

Settings

Structural Heat transfer

SOL TRANOPT

Static Steady 153 -

Static Transient 159 1

Dynamic Steady 159 2

Transient 159

Dynamic 0 (default)

Table 9.1: Settings for structural and heat transfer combinations

e Note that since the temperatures are interpolated in the same
manner as the displacements, but the mechanical strains are
obtained by differentiation of the displacements, it follows that the
thermal strains (which are proportional to the temperatures) are in
effect interpolated to a higher order than the mechanical strains.
The consequence is that for coarse finite element idealizations, the
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stress predictions show undesirable errors (e.g., nonzero stresses,
when the stresses should be zero). These errors vanish as finer
finite element idealizations are employed.

Fig. 9.1-1 summarizes the results of a simple analysis that
illustrates these concepts.

100° 100°
200 T Lo20e T !
P y & . ‘'
Two linear elements
One thermal element model Two thermal element model

Oxx =0 Oxx =0
X el o e

Two linear elements

Structural model Structural model

Figure 9.1-1: Simple problem to schematically demonstrate solution
inaccuracies that can arise due to discretizations used in
heat flow and stress analyses
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9.1 One-way coupling

e In this case, the heat transfer and structural equations are solved
separately, with the temperatures from the heat transfer passed back
to the structural problem for calculation of thermal expansion and
temperature-dependent material properties.

e Currently, the time steps used in the structural and heat transfer
equations are assumed to be the same, as set via the TSTEP entry.
However, if ATS is present the time steps may differ during the
solution. In this case, the heat transfer solution is always ahead of
the structural one, and the structural solution uses temperature
interpolated from the two closest heat transfer solutions.

9.2 Iterative coupling

e In iterative coupling, the thermal solution can affect the
structural solution and the structural solution can affect the thermal
solution.

e The coupling from structural to thermal models includes the
following effects:

< Internal heat generation due to plastic deformations of the
material

< Heat transfer between contacting bodies

< Surface heat generation due to friction on the contact
surfaces.

e At the beginning of each time step, the structural model is
solved for the displacements using the current temperatures. Then
the heat transfer model is solved for the temperatures using the
current displacements. This cycle constitutes one TMC equilibrium
iteration. TMC convergence is then assessed, and if it is not
reached, then the structural and heat transfer models are solved
again using the new current displacements and new current
temperatures. This process is repeated until TMC convergence is
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reached. Note that within each TMC equilibrium iteration, the heat
transfer and structural models each have their own internal iteration
procedure and convergence criteria.

e The same TMC convergence parameter is used in the
displacement and temperature convergence checks.

e The temperature convergence is checked as follows:

t+At9(i) A e(i—l) ||2

Hmﬂ(i)” <TOLL
2

e The displacement convergence is checked as follows:

t+AtU(i) A U(i—l)”2

At U(z‘) ||
2

<TOLL

where i denotes the TMC iteration. TOLL is set using the
TMCTOL parameter in the TMCPARA entry.

e In strongly coupled problems, a temperature relaxation factor
can be used to help reach convergence. This is set via the TRELAX
parameter in the TMCPARA entry and defaults to 1.0, which
corresponds to no relaxation. The temperatures used in the
structural analysis in the case of temperature relaxation at a TMC
iteration £ are based on the temperatures in the last heat transfer
TMC iteration k-1 as well as the prior heat transfer TMC iteration
k-2.

0% e =(1=2) 07 + 2611,

heat heat
where A is the temperature relaxation factor.
e Note that decreasing the relaxation factor usually reduces the

chances of an oscillating solution, but if decreased too much will
also slow down convergence.
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Internal heat generation rate due to plastic deformations of the
material: The internal heat generation rate per unit volume due to

plastic deformations ¢,, is computed as

q, =0T:D” 9.1)

where T is the Cauchy stress tensor and D” is the plastic velocity
strain tensor. The overbar denotes “corresponding to the
intermediate configuration”. @ is a parameter, 0 < w <1, to
account for the fraction of plastic work that gets converted to
internal heat. It is set via the HGENPL parameter in the
TMCPARA entry.

This feature is only available for 2-D solid, 3-D solid and shell
elements.

Internal heat generation rate due to inelastic deformations of
rubber-like materials: When there are viscoelastic or Mullins
effects included in rubber-like materials, these effects can cause
heat generation, see Sections 3.7.7 and 3.7.8.

Heat transfer between contacting bodies: Contact heat transfer
is governed by an equation similar to that used for convection
boundary conditions: the heat flux entering contacting body / is

q” =h(0’-0") 9.2)

where / is the contact heat transfer coefficient (set via the

TMCHHAT parameter in the BCTPARA entry) and 8" and 6’
are the surface temperatures of the contacting bodies.

In the limit as / approaches infinity, the temperatures of the

contacting bodies become equal to each other. With h large,
equation (9.2) can be considered a penalty method approximation

to the equation 8’ =8’ .

Surface heat generation rate due to friction: The frictional
contact heat generation rate at a contactor node G is computed as

gy =1 U 9.3)

360

Advanced Nonlinear Solution — Theory and Modeling Guide



9.2: Iterative coupling

where T is the frictional contact force and U is the relative
velocity between the contacting bodies at the point of contact.

The heat rate going to the contactor body is £, qg and the heat
rate going to the target body is f,q. , where f. and f, are the

t
fractions of generated heat reaching the contactor and target
surfaces, respectively. These user input parameters are set via the
TMCFC and TMCFT parameters in the BCTPARA entry. The
following relations must hold:

0<f<l, 0<f<l, O0<f+f<I

The contactor heat rate is applied to the contactor node. The target
heat rate is distributed among the target segment nodes.
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10. Additional capabilities

10.1 Initial conditions

10.1.1 Initial displacements and velocities

o Initial displacements and velocities at nodes can be specified
using the TIC entry together with the IC case control command.

e Any initial displacements or velocities specified in a restart run
are ignored, except when restarting from a static to a dynamic
analysis; in this case, initial velocities are taken into account.

o Initial rotations should only be applied in small displacement
analysis.

10.1.2 Initial temperatures

¢ Initial temperatures, for both structural and heat transfer
analyses, are specified via the TEMPERATURE (INITIAL) case
control command. The actual temperature values are specified via
the TEMPD and TEMP entries.

o For transient heat transfer analysis (SOL 601,159) the initial
temperatures can also be specified using the IC case control

command. In this case, it takes precedence over the
TEMPERATURE (INITTIAL) command.

e The thermal strains are always assumed to be zero initially, see
Section 3.1.6.

10.2 Restart

o Restart is a useful feature in Advanced Nonlinear Solution. It
can be used when the user wishes to continue an analysis beyond
its previous end point, or change the analysis type, loads or
boundary conditions or tolerances. A restart analysis is selected by
setting MODEX = 1 in the NXSTRAT entry. Recovering results
from a restart file without continuing the analysis can also be done
setting MODEX = 2.
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e All relevant solution data needed for a restart run are saved in a
file (with extension .res) in case they are needed in a restart
analysis. The frequency of data writing to a restart file is set via the
IRINT flag in the NXSTRAT entry.

¢ Note that multiple restart data can be appended to the restart
file. This enables the restart analysis to be based on a solution step
different from the last converged solution. Saving multiple time
step solutions to a restart file can be expensive, however, as it leads
to a large restart file size. The restart time is set via the TSTART
parameter in the NXSTRAT entry.

e Ifno restart time is provided in the restart run (achieved by
setting the restart time to 0.0), the program uses the data for the
latest restart time on the .res file.

¢ Note that once the second analysis starts, it will overwrite the
.res file with new data. Therefore, if the user wishes to redo the
second run, then the .res file must be copied again from the first
model.

e The geometry, and most element data, cannot be changed in a
restart analysis. However, the following changes are allowed:

» Type of analysis can change. Static to dynamic and dynamic
to static restarts are allowed.

» Solution type can be changed. Solution 601 (static or
dynamic) to Solution 701 restarts are allowed and vice-versa. In
this case, features not available in either solution type cannot be
used.

» Solution control variables can change. The flags, constants
and tolerances for the iteration method, convergence, time
integrations, automatic time stepping and load-displacement-
control can be changed.

» Externally applied loads and enforced displacements can be
changed.

» The material constants can be changed. However, note that
in a restart run the same material model (with the same number
of stress-strain points and the same number of temperature
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points, if applicable) must be used for each element as in the
preceding run.

» Boundary conditions can be changed.
» Constraint equations and rigid elements can be changed.

» Contact settings can be changed. This includes most contact
set, contact pair and contact surface parameters. See section
4.6.4 for restrictions.

» Rayleigh damping coefficients can be changed.

» Time increment and number of solution steps can be
modified.

» Time functions describing the load variations can be
changed.

¢ Note that some default settings are different between Solution
601 and Solution 701. Some of these have to be manually set by the
user to enable restarts. The most common such settings are:

» Incompatible modes default on in Solution 601 and off in
Solution 701

» Default large strain formulation (ULH in Solution 601 and
ULJ in Solution 701)

e When restarting from static to dynamic analysis (both implicit
and explicit dynamics), the initial velocities and accelerations are
assumed to be zero. However, if an initial velocity is prescribed in
the restart run, it will be used instead. When restarting from one
dynamic analysis to another, initial velocities and accelerations are
transferred from the first to the second run.

e A results recovery mode is available by setting MODEX =2 in
the NXSTRAT entry. In this case, the program reads the restart file
and recovers the results at the final restart time available in the
restart file. Results at a specific time can also be recovered by
setting the TSTART parameter in NXSTRAT to the desired time.
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10.3 Element birth and death feature

e The element birth and death option is available for modeling
processes during which material is added to and/or removed from
the structure (set via the EBDSET case control and bulk data
commands). Such processes, for example, are encountered in the
construction of a structure (structural members are added in
succession), the repair of a structure (structural components are
removed and new ones are added) or during the excavation of
geological materials (a tunnel is excavated). If the element birth
and death option is used, the corresponding elements become
automatically nonlinear. Fig. 10.3-1 illustrates two analyses that
require the element birth and death options.

e The main features of element birth and death are as follows:

» If the element birth option is used, the element is added to
the total system of finite elements at the time of birth and all
times thereafter.

» If the element death option is used, the element is taken out
of the total system of finite elements at times larger than the
time of death.

» If both element birth and death options are used, the element
is added to the total system of finite elements at the time of birth
and remains active until the time of death. The time of death
must be greater than the time of birth. The element is taken out
of the total system of finite elements at all times larger than the
time of death.

e Once an element is born, the element mass matrix, stiffness
matrix and force vector are added to the mass matrix, stiffness
matrix and force vector of the total element assemblage (until the
death time, if any). Similarly, once an element dies, the element
mass matrix, stiffness matrix and force vector are removed from
the total assembled mass matrix, stiffness matrix and force vectors
for all solution times larger that the time of death of the element.
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Installation of Column to be
temporary support replaced

/

/

(a) Repair of a bridge

Ground level

Tunnel to be
excavated

(b) Excavation of a tunnel

Figure 10.3-1: Analyses that require the element birth and death
options

e Note that an element is born stress free. Hence, even if the nodal
points to which the new element is connected have already
displaced at the time of birth, these displacements do not cause any
stresses in the element, and the stress-free configuration is defined
to occur at the nearest solution time less than or equal to the birth
time.
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¢ Note also that the damping matrix is not modified when
elements die or when they are born. Therefore, Rayleigh damping
should not be used. For example, if a pipe break is simulated by
setting the death time for certain elements in an implicit dynamic
analysis, then, if Rayleigh damping is used, the pipe might not
separate.

e When the element birth/death option is used, the tangent
stiffness matrix may at some solution times contain zero rows and
corresponding columns. The equation solver disregards any zero
diagonal element in the tangent stiffness matrix if no elements are
attached to the associated degrees of freedom.

e Advanced Nonlinear Solution enables the user to set an element
death decay time parameter (DTDELAY in NXSTRAT) which
causes the gradual reduction of the element stiffness matrix to zero
over a finite time rather than instantly. The reduction starts at the
death time and progresses linearly with time until the decay time
has passed. The element therefore totally vanishes at a time equal
to the sum of the death time and the death decay time. This option
is useful for mitigating the discontinuity that the structure may
experience due to the death of some of its elements.

e The element birth/death option applies to any mass effect i.e.,
gravity loading, centrifugal loading and inertia forces. The mass
matrix, therefore, does not remain constant throughout the solution.

e The time at which an element becomes active or inactive is
specified by the parameters TBIRTH and TDEATH respectively
(in the EBDSET entry).

e If an element is required to be born at time ¢, i.e., the
configuration of the element at time ¢, corresponds to the stress-free

and Af is

configuration, enter TBIRTH = ¢#, + ¢ where ¢ =

the time step between time ¢, and the next solution time. If an
element is required to be inactive at and after time #,, enter

At
TDEATH = ¢, - ¢, where ¢ = 1000 and At is the time step between

the previous solution time and time ¢, .
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Birth option active: Fig. 10.3-2(a) shows the activity of an
element for which the birth option is active. Note that if TBIRTH is
input for the range shown (where TBIRTH > ¢, and TBIRTH is < ¢,
+ Af), then the stress-free configuration of the element is at time 7,
and the element is first active at time #, + Af. Note that the stress in
the element is based on the displacements measured from the
configuration at time ¢, irrespective of the input value of TBIRTH,
provided that TBIRTH is input in the range shown in Fig.
10.3-2(a). See also the example given below.

Death option active: Fig. 10.3-2(b) shows the activity of an
element for which the death option is active. Note that if TDEATH
is input for the range shown (where TDEATH > ¢, - At and
TDEATH < ¢;), then the element is first inactive at time £,;.

TBIRTH in this range causes the element
to be included in the stiffness matrix and
the force vector at time t+At

! Time
0 t t+At

Stress free First solution time for which
state the element is active

(a) Birth option active

TDEATH in this range causes the element to be
not included in the stiffness matrix and the
force vector at time t

/

T Time
0 t-At t

First solution time for which
the element is inactive

(b) Death option active

Figure 10.3-2: Use of element birth and death option
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Birth then death option active: This is a direct combination of the
birth and death options. Initially some elements are inactive. At a
particular solution time determined by the time of birth TBIRTH,
the elements become active and remain so until a subsequent
solution time determined by the time of death TDEATH, where
TDEATH > TBIRTH.

Example of the element birth option: Consider the materially
linear rod element model shown in Fig. 10.3-3(a) in which the time
of birth for element 2 is slightly larger than ¢. At time ¢, the length
‘L corresponding to the load ‘F is determined as shown in Fig. 10.3-
3(b). Note that ‘L corresponds to the length at which element 2 is
stress-free.

Element 2
(TBIRTH =t + At/1000) ___ u(t
Ve
/ FO)
4
Element 1 Linear 2-node
(always active) rods
< L ’l
(a) Model schematic
tp
7 e
_ 0
F =K,(L-L)

‘L

(b) Solution at time t

Figure 10.3-3: Example of the use of the element birth option
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At the time of birth, element 2 with length ‘L is added to the
system which was already in equilibrium, see Fig. 10.3-3(c). Note
that the internal force in element 2 is exactly zero after its addition
to the system.

At time ¢ + At, element 2 is now active. The force in element 2
is determined based on its deformation with respect to the stress-
free state, see Fig. 10.3-3(d). Hence, the total increment in
displacement from time ¢ to time # + A¢ determines the force in the
rod. Identically, the same solution would be obtained using any
value for TBIRTH which satisfies the relation TBIRTH > ¢ and
TBIRTH <t + At.

e The birth/death feature is available for contact pairs in contact
analysis.

Frs0

| Element 2
| 'L

\|
,l

(c) Stress-free configuration for element 2

K,=AE/'L
t+AtF l+A(F \znl:Kz(ﬁ-AlL_tL)
Element 2 - »
K,=AE/‘L
Element 1 t+mFint:K (HAIL—OL)
1 1

t+AtL

(d) Solution at time t + At

Figure 10.3-3: (continued)
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10.4 Reactions calculation

e Output of the reaction forces and moments is governed by the
SPCFORCES case control command.

¢ Note that loads applied to fixed degrees of freedom do not
contribute to the displacement and stress solutions. However, these
loads are accounted for in the reaction calculations.

e Reaction forces and moments at a node are computed using the
consistent force vectors (calculated from the element internal
stresses) of elements attached to the node. Hence, a check on the
balance of the support reactions and the applied loads often
provides a good measure on the accuracy of the solution (in terms
of satisfying equilibrium in a nonlinear analysis).

¢ Reaction calculations in dynamic analysis with consistent mass
matrix take into account the mass coupling to the deleted degrees
of freedom. The reactions exactly equilibrate the applied forces in
all cases.

e Reaction calculations in dynamic analysis do not include
contributions from the daming matrix.

10.5 Element death due to rupture

e For the materials and elements that support rupture, element
death is automatically activated when rupture is detected at any
integration point of the element. The element is then considered
"dead" for the remainder of the analysis, and, in essence, removed
from the model (mass, stiffness, and load contributions).

e When elements die, contactor segments connected to these
elements are also removed from the model.

e Dead elements may be gradually removed from the model in
order to avoid sudden changes in stiffness and acceleration. This
feature is activated by setting a non-zero DTDELAY time in the
NXSTRAT entry.
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10.6 Stiffness stabilization (Solution 601 only)

o Stiffness stabilization is used to prevent the equation solver
from encountering zero pivots that would stop the solution of
equations. In dynamic analysis, these zero pivots are not present
due to the mass matrix. However in static analysis, zero pivots may
arise, for example in the following cases:

Unsupported body: 1f the forces acting on the body are not in
equilibrium, one or more rigid body motions of the body are
activated and no solution can be expected. Even if the forces acting
on the body are in equilibrium, so that no rigid body motion is in
fact activated, zero pivots are present corresponding to the rigid
body modes.

Contact analysis, in which one or more of the individual parts of
the model (not considering contact) contain rigid body motions.
When the parts are not in contact, then there is nothing to prevent
the rigid body motions.

Mesh glueing, when one or more of the individual parts of the
model (not considering glueing) contain rigid body motions.

General constraints, when one or more of the individual parts of
the model (not considering the general constraints) contain rigid
body motions.

e Parts of the model with rigid body motions can alternatively be
treated by adding weak springs at various locations in the model.
The advantages of using stiffness stabilization, instead of using
weak springs, are:

» Determining the number, location and stiffness of the springs
requires a lot of user intervention.

» There may be no suitable locations for the springs.
» The stiffness of each spring has to be entered as an absolute

value (with dimensions of force/length) while the stiffness
stabilization factor is dimensionless (see below).
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» The springs generate internal forces which affect the final
solution while stiffness stabilization does not affect the internal
forces. It is sometimes hard to assess how much the springs
affect the final solution.

o Stiffness stabilization modifies the diagonal stiffness terms
(except for those belonging to contact equations) as follows:

Kii =+ gSTAB) Kii

where &, 1s a dimensionless stabilization factor. The right-hand
side load vector is not modified.

o There are three stiffness stabilization options available, which
are selected using the MSTAB and MSFAC parameters in the
NXSTRAT entry:

MSTAB=0 (no stabilization)
MSTAB=1 (stabilization, with &g, = MSFAC)

MSTAB=2 (stabilization is activated if needed)
The defaults are MSTAB=0, MSFAC=1E-10.

e When MSTAB=2, the use of stabilization is determined based
on the ratio of the factorized maximum and minimum diagonals of
the stiffness matrix. This determination is made for every
equilibrium iteration in nonlinear analysis. When stabilization is
used, stabilization is applied to all degrees of freedom using the
value &4, (as if MSTAB=1).

e In linear analysis, stabilization should be used with caution,
since the right-hand-side load vector is not modified. The solution
can therefore be affected by stiffness stabilization.

It is recommended to try the analysis first without stabilization.
If the equation solver encounters zero pivots, then try one of the
following methods:

» Use stabilization with the smallest possible value of &,
for which the equation solver gives a solution, or
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» Use stabilization, and change the analysis to a nonlinear
analysis, for example specify element birth-death in one of the
elements; or specify a nonlinear material, with material
constants chosen so that the material response is linear (for
example, an elastic-plastic material with a very high yield
stress).

¢ In nonlinear analysis, since the right-hand-side load vector is
not modified, the final converged solution is the same as without
stabilization (assuming that the tolerances are tight enough).
However, the rate of convergence can be worsened due to the
stiffness stabilization, so that more equilibrium iterations are
required.

o Stiffness stabilization is only useful for the sparse and 3D-
iterative solvers. The iterative multigrid solver does not fully
factorize the stiffness matrix and hence cannot properly trigger the
automatic stabilization.

10.7 Bolt feature (Solution 601 only)

e Bolts in Solution 601 are modeled using beam elements with a
user-specified initial bolt force or preload. The beam elements that
make up a bolt are selected via the BOLT entry, and the bolt force
is defined via the BOLTFOR entry. The bolt preload set must be
selected via the BOLTLD case control command.

Fig 10.7-1 illustrates the bolt modeling feature.

e An iterative solution step is required to obtain the desired bolt
force in all bolts. This solution step is performed at the very
beginning of an analysis prior to the rest of the step-by-step
analysis. External forces are not included in the bolt force iteration
step.

e Bolt force iterations can be performed in one step (default) or in
a number of “bolt steps” (set via the BOLTSTP parameter in
NXSTRAT). This feature should be used if the bolt conditions are
too severe to converge in one step.
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Bolt force R: .
R,
AL
JA Bolt
A ? direction
N
% W L
EA y\
Rest of structure
v Bolt

Bolt

Figure 10.7-1: Schematic illustrating the bolt modeling feature

e The bolt feature can only be used in static and implicit dynamic
analysis.

¢ In the time steps following the bolt force steps, the force in the
bolts can vary depending on the loads applied to the rest of the
model.

¢ Both small and large displacement formulations can be used for
the bolt’s beam elements. Any cross-section available for the beam
element can be used, but only the isotropic elastic material model
can be used.

¢ In the bolt force calculations we iterate as follows:

OK(i—l)AU(i) — R%i_l) _OF(i—l)
and

OU(i) — OU(i—l) _l_AU(i)

where R!™"is the consistent nodal point force vector
corresponding to the forces in the bolt elements.
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e The bolt force convergence is checked for every bolt element m:

R, -R))|
— <TOLL

m

where R is the user-input bolt force for element 7, R is the

current force in bolt element m, and TOLL=0.01 is an internal tight
bolt tolerance.

¢ Different modeling techniques with varying complexity can be
used to model a bolt. Three such techniques are shown in Fig.
10.7-2, in increasing level of complexity. In the third technique,
solid elements are used throughout the bolt except at one section
where a layer of solid elements is removed and replaced by the
beam bolt element. This technique can accurately capture model
contact interactions and also bolt rupture since any material model
can be applied to the solid elements section of the bolt.

e Ifthe ATS method is used, it is also applied to the bolt loading
procedure.

¢ Bolt loading can be used with heat flow analysis, for both one-
way and fully coupled TMC analysis.

10.8 Direct matrix input (Solution 601 only)

e Advanced Nonlinear Solution supports direct matrix input usng
the K2GG, B2GG, M2GG case control commands and the DMIG
bulk data entry.

10.9 Parallel processing

e Solution 601 supports parallel processing on all supported
platforms, for the in-core and out-of-core sparse solvers.

e Solution 701 also supports parallel processing on all supported
platforms.
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Constraints Shell elements or rigid surface

a a

One or more bolt elements One or more bolt elements
No contact needed Contact at top and bottom
(a) Bolt modeled with bolt element only (b) Bolt element used only for bolt shank

Solid elements

Constraints

Bolt
element

Contact all around if needed

(c) Bolt element only used for cutout section of bolt shank

Figure 10.7-2: Different bolt modeling techniques

e Parallelized assembly of the global system matrices is supported
on all platforms except for the 32-bit Windows platform.
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e To benefit from parallel element assembly, groups of elements
with the same property ids must be divided into subgroups. The
number of subgroups should be equal to or greater than the number
of processors (preferably a multiple of the number of processors).
This is set via the NSUBGRP parameter in NXSTRAT.

10.10 Usage of memory and disk storage

Solution 601

Depending on the size of the problem and the memory allocated to
Solution 601, it can perform the solution either in-core (entirely
within real or virtual memory) or out-of-core (reading from and
writing to disk files). Whenever possible the solution is performed
in-core.

e The program memory usage is divided into two parts:

» memory usage not considering the equation solver
» memory usage of the equation solver

Each of these parts can be performed in-core or out-of-core, as
described below.

o Memory usage not considering the equation solver: There are
two options:

» The global system matrices and element information are all
stored in-core (IOPTIM=3) .

» The global system matrices are stored in-core, and the
element information is stored out-of-core (IOPTIM=2).

The program automatically chooses the appropriate option
based on the size of the problem and the available memory. The
chosen option is reported in the .f06 file as the value of IOPTIM.
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e Memory usage of the equation solver

» Sparse solver and 3D-iterative solver: Each of these solvers
can either run in-core or out-of-core. The program chooses
whether the solver runs in-core or out-of-core, based on the size
of the problem and the available memory.

» Iterative multi-grid solver. The solver always runs in-core.
The out-of-core solution procedure would take an unreasonably
long time in most cases.

Solution 701
Solution 701 can only run in-core. Enough memory must be
provided.
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Additional reading

This section lists some references related to Solution 601 and 701.

Books
K.J. Bathe, Finite Element Procedures, Prentice Hall, 1996.

D. Chapelle and K.J. Bathe, The Finite Element Analysis of Shells -
Fundamentals, Springer, 2nd ed, 2011.

M.L. Bucalem and K.J. Bathe, The Mechanics of Solids and
Structures - Hierarchical Modeling and the Finite Element
Solution, Springer, 2011.

Web
Additional references, including downloadable papers, can be

found at the MIT web site of Prof. K. J. Bathe:

http://meche.mit.edu/people/faculty/index.html?id=10
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Beam elements, 23
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Bubble functions, 63, 73

C
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Consistent contact surface stiffness,
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Constraint equations, 288
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Contact set properties, 206
Contact surface compliance, 211
Contact surface depth, 208
Contact surface offsets, 206
Contact surfaces, 189, 191
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two-dimensional, 191
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356
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conditions, 134
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D
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Deformation-dependent distributed
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Direct matrix input, 376
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61,71
Distributed loads
beam, 278
deformation dependent, 277
DMIG, 376
Dynamic analysis, 323, 328

E

Effective plastic strain, 123
Elastic-creep material models, 126
Elastic-isotropic material model, 108,

110
Elastic-orthotropic material model,

108, 110

3-D solid elements, 111, 112
Elasto-plastic material model, 119
Element birth/death, 298, 365
Element death due to rupture, 371
Element locking, 56
Elements

2-D solid, 14, 57, 58

3-D solid, 14, 68

beam, 14

concentrated mass, 89

dampers, 14, 78

gap, 88, 89

general, 78

line, 14, 21

masses, 14, 78

other, 88

rigid, 83
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rod, 14

R-type, 14, 83

scalar, 14, 78

shell, 14, 33

solid, 14, 68

springs, 14, 78

surface, 14, 57
Enforced displacements, 284, 285
Enforced motion, 284
Engineering strains, 94, 97
Engineering stresses, 94, 97
Equilibrium iterations

full Newton method, 299
Explicit dynamic analysis, 337
Exponential creep law, 133

F

Five degrees of freedom node, 45
Formulations for
2-D solid elements, 64
3-D solid elements, 75
rod elements, 22
shell elements, 42
Fourier number, 352
Fourier's law, 345
Friction
basic models, 214
pre-defined models, 214
Friction delay, 213
Full Newton iterations, 299
line searches, 299

G

Gap element, 88, 89

Gap override, 209

Gasket material model, 172
General elements, 78
Green-Lagrange strains, 95, 97

H

Heat flux boundary load, 295
Heat transfer materials, 187
Hermitian beam elements, 23
Holzapfel model for finite strain
viscoelasticity, 158
Hyperelastic material models, 138
Hyper-foam material model
3-D analysis, 147
axisymmetric analysis, 147
plane strain analysis, 147
selection of material constants, 147

I

Implicit time integration, 323
trapezoidal rule, 325, 328
Improperly supported bodies, 232
Incompatible modes finite elements,
63,73
Inelastic deformations, 101
Inertia loads, 279
Initial conditions, 348, 362
Internal heat generation, 296
Isotropic hardening, 119
Iterative multi-grid solver, 331
Iterative thermo-mechanical coupling
heat transfer between contacting
bodies, 360
internal heat generation, 360
surface heat generation due to
frictional contact, 360

K
Kinematic hardening, 119
Kirchhoff stresses, 98

L

Large displacement formulation, 22,
27,42,108, 125
Large displacement/large strain
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formulation, 26, 64, 75, 95, 121,
138
Large displacement/large strain
kinematics, 184
Large displacement/small strain
formulation, 26, 64, 75, 94, 121,
127
Large displacement/small strain
kinematics, 184
Large strain analysis
ULJ formulation, 103
LDC method, 306, 315
Limiting maximum incremental
displacement, 234
Line elements, 14, 21
Line search, 299, 300
Linear dynamic analysis, 323
Linear formulation, 42, 65, 75, 108
Linear static analysis, 297, 341, 342
Loading
centrifugal, 279, 280
concentrated, 274
inertia, 279
mass-proportional, 279, 282
Logarithmic strains, 97
Low speed dynamics, 302

M

Mass elements, 14, 78

Mass matrices for
2-D elements, 66
shell elements, 53

Mass matrix, 326, 339

Mass scaling, 344

Mass-proportional loads, 279, 282

Material models, 91
Arruda-Boyce, 144
elastic-creep, 126
elastic-isotropic, 108, 110
elastic-orthotropic, 108, 110
elasto-plastic, 119

gasket, 172
hyperelastic, 138
Mooney-Rivlin, 140
Mullins effect, 167
nonlinear elastic, 113, 117
orthotropic conductivity, 187
plastic-bilinear, 119
plastic-creep, 126
plastic-multilinear, 119
Shape Memory Alloy, 176
SMA, 176
Sussman-Bathe, 148
temperature-dependent elastic, 124
thermal elasto-plastic, 126
thermal isotropic, 124
thermal orthotropic, 124
thermal strain effect, 156
viscoelastic, 184
viscoelastic effects, 158
Material models for
2D solid elements, 64
2-D solid elements, 64
3-D solid elements, 74
rod elements, 22
shell elements, 42
Materially-nonlinear-only
formulation, 42, 65, 75, 121, 125,
127, 184
Matrices for
3-D solid elements, 76
beam elements, 33
Memory allocation, 330
in-core solution, 378, 379
out-of-core solution, 378
Mesh glueing, 289
MITC, 36
Mixed Interpolation of Tensorial
Components, 36
Mixed-interpolated finite elements,
62,71
Mixed-interpolation formulation, 122,

384 Advanced Nonlinear Solution — Theory and Modeling Guide



Index

141
Modeling of gaps, 118
Mooney-Rivlin material model, 140

3-D analysis, 141

axisymmetric analysis, 141

plane strain analysis, 141

plane stress analysis, 140

selection of material constants, 142
Mullins effect, 167
Multilayer shell elements, 50

N

Nominal strains, 97
Nonconvergence, 312, 314
Nonlinear dynamic analysis, 328
Nonlinear elastic material model, 113,
117
Nonlinear static analysis, 298
selection of incremental solution
method, 314
Non-positive definite stiffness matrix,
330
Numerical integration for
2-D solid elements, 65
3-D solid elements, 76
beam elements, 30
rod elements, 22

(0]

O.R.N.L. rules for cyclic loading
conditions, 134

Ogden material model
selection of material constants, 144

Orthotropic conductivity material
model, 187

P

Parallel processing, 376
Penetration depth, 353
Plastic strains, 130

Plastic-bilinear material model, 119

Plastic-creep material models, 126

Plastic-multilinear material model,
119

Positive definite stiffness matrix, 297

Post-collapse response, 306

Power creep law, 133

Pre-defined friction models, 214

Pressure loads
deformation-dependent, 277

R

Radiation boundary condition, 293
Rayleigh damping, 327, 328, 339
Reactions, 371
Recommendations for use of

shell elements, 56
Restart, 362
Restart with contact, 220
Rigid elements, 83
Rigid target contact algorithm, 235
Rigid target method, 202, 235
Rod elements, 21

formulations, 22

material models, 22

numerical integration, 22
R-type elements, 14, 83
Rupture conditions, 124

S

Scalar elements, 14, 78
Segment method, 202
Shape Memory Alloy, 176
Shell elements, 14, 33
4-node, 56
basic assumptions in, 36
composite, 50
director vectors, 36
formulations, 42
locking, 56
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mass matrices, 53
material models, 42
MITC, 56
multilayer, 50
nodal point degrees of freedom, 43
recommendations for use, 56
shear deformations, 42
thick, 56
thin, 56
Six degrees of freedom node, 46
SMA material model, 176
Small displacement contact feature,
189, 197
Small displacement formulation, 22,
27,108, 125
Small displacement/small strain
formulation, 26, 42, 64, 75,94, 121,
127
Small displacement/small strain
kinematics, 184
Solid elements, 14, 68
Solvers, 330
3D-iterative solver, 334
iterative multi-grid solver, 331
sparse solver, 330
Sparse solver, 330
in-core, 330
memory allocation, 330
out-of-core, 330
Specific heat matrix, 351
Spring elements, 14, 78
Stabilized TLA method, 305
Static analysis, 297, 341, 342
Steady state analysis, 349
Stiffness stabilization, 233, 299, 372
Strain hardening, 134
Strain measures, 96
engineering strains, 94, 97
Green-Lagrange strains, 97
Hencky strains, 97
Jaumann strains, 97

stretches, 97
Stress measures, 97
2" Piola-Kirchhoff stress, 98
2™ Piola-Kirchhoff stresses, 97
Cauchy stress, 98
Cauchy stresses, 94, 97
engineering stress, 97
engineering stresses, 94, 97
Kirchhoff stress, 98
Stretch tensor
left, 101
Stretches, 95, 97
Structural vibration, 326
Superelastic effect, 176
Suppressing contact oscillations, 219
Surface elements, 14, 57
Sussman-Bathe material model, 148

T

Temperature-dependent elastic
material models, 124

Thermal elasto-plastic material
models, 126

Thermal isotropic material model, 124

Thermal orthotropic material model,
124

Thermal strains, 105, 130

Tied contact, 196

Time functions, 269, 272

Time step management, 343

TL formulation, 65, 75, 108, 121, 125,
127,138, 184

TLA method, 305

TLA-S method, 305

Total Load Application method, 305

Transient analysis, 350
choice of mesh size, 351
choice of time step size, 351

Trapezoidal rule, 325, 328

True strains, 97
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U \%
UL formulation, 108, 121, 125, 127 Viscoelastic effects, 158
ULH formulation, 75, 121, 127, 184 Viscoelastic material model, 184
ULJ formulation, 121 von Mises yield condition, 32
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