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1. Introduction 

1.1  Objective of this manual 

This Theory and Modeling Guide serves two purposes: 
 

f To provide a concise summary of the theoretical basis of 
Advanced Nonlinear Solution as it applies to Solution 601 and 
Solution 701. This includes the finite element procedures used, 
the elements and the material models. The depth of coverage of 
these theoretical issues is such that the user can effectively use 
Solutions 601 and 701. A number of references are provided 
throughout the manual which give more details on the theory 
and procedure used in the program. These references should be 
consulted for further details. Much reference is made however 
to the book Finite Element Procedures (ref. KJB). 

 
ref.  K.J. Bathe, Finite Element Procedures, Prentice Hall, 

Englewood Cliffs, NJ, 1996. 
 

f To provide guidelines for practical and efficient modeling using 
Advanced Nonlinear Solution. These modeling guidelines are 
based on the theoretical foundation mentioned above, and the 
capabilities and limitations of the different procedures, 
elements, material models and algorithms available in the 
program. NX Nastran commands and parameter settings needed 
to activate different analysis features are frequently mentioned. 

 
 It is assumed that the user is familiar with NX Nastran 
fundamentals pertaining to linear analysis. This includes general 
knowledge of the NX Nastran structure, commands, elements, 
materials, and loads. 

We intend to update this report as we continue our work on 
Advanced Nonlinear Solution. If you have any suggestions 
regarding the material discussed in this manual, we would be glad 
to hear from you. 
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1.2  Overview of Advanced Nonlinear Solution 

• Advanced Nonlinear Solution is a Nastran solution option 
focused on nonlinear problems. It is capable of treating geometric 
and material nonlinearities as well as nonlinearities resulting from 
contact conditions. State-of-the-art formulations and solution 
algorithms are used which have proven to be reliable and efficient. 
 
• Advanced Nonlinear Solution supports static and implicit 
dynamic nonlinear analysis via Solution 601, and explicit dynamic 
analysis via Solution 701. Solution 601 also supports heat transfer 
analysis and coupled structural heat transfer analysis. 
 
• Advanced Nonlinear Solution supports many of the standard 
Nastran commands and several commands specific to Advanced 
Nonlinear Solution that deal with nonlinear features such as 
contact. The NX Nastran Quick Reference Guide provides more 
details on the Nastran commands and entries that are supported in 
Advanced Nonlinear Solution. 
 
• Advanced Nonlinear Solution supports many of the commonly 
used features of linear Nastran analysis. This includes most of the 
elements, materials, boundary conditions, and loads. Some of these 
features are modified to be more suitable for nonlinear analysis, 
and many other new features are added that are needed for 
nonlinear analysis. 
 
• The elements available in Advanced Nonlinear Solution can be 
broadly classified into rods, beams, 2-D solids, 3-D solids, shells, 
scalar elements and rigid elements. The formulations used for these 
elements have proven to be reliable and efficient in linear, large 
displacement, and large strain analyses. Chapter 2 provides more 
details on the elements. 
 
• The material models available in Advanced Nonlinear Solution 
are elastic isotropic, elastic orthotropic, hyperelastic, plastic 
isotropic, gasket, and shape memory alloy. Thermal and creep 
effects can be added to some of these materials. Chapter 3 provides 
more details on these material models. 
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• Advanced Nonlinear Solution has very powerful features for 
contact analysis. These include several contact algorithms and 
different contact types such as single-sided contact, double-sided 
contact, self-contact, and tied contact. Chapter 4 provides more 
details on contact. 
 
• Loads, boundary conditions and constraints are addressed in 
Chapter 5. Time varying loads and boundary conditions are 
common to nonlinear analysis and their input in Advanced 
Nonlinear Solution is slightly different from other Nastran 
solutions, as discussed in Chapter 5. 
 
• Solution 601 of Advanced Nonlinear Solution currently 
supports two nonlinear structural analysis types: static and implicit 
transient dynamic. Details on the formulations used are provided in 
Chapter 6. Other features of nonlinear analysis, such as time 
stepping, load displacement control (arc length method), line 
search, and available solvers are also discussed in Chapter 6. 
 
• Solution 701 of Advanced Nonlinear Solution is dedicated to 
explicit transient dynamic analysis. Details on the formulations 
used are provided in Chapter 7. Other features of explicit analysis, 
such as stability and time step estimation are also discussed in 
Chapter 7. 
 
• Solution 601 of Advanced Nonlinear Solution also supports two 
heat transfer or coupled structural heat transfer analysis types. The 
first type 153 is for static structural with steady state heat transfer, 
or just steady state heat transfer. The second analysis type 159 is 
for cases when either the structural or heat transfer models are 
transient (dynamic). This type can also be used for just transient 
heat transfer analysis. Details of the heat transfer analysis are 
provided in Chapter 8, and details of the thermo-mechanical 
coupled (TMC) analysis are provided in Chapter 9. 
 
• Additional capabilities present in Advanced Nonlinear Solution 
such as restarts, stiffness stabilization, initial conditions, and 
parallel processing are discussed in Chapter 10. 
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Section 9.

• Most of the global settings controlling the structural solutions in 
Advanced Nonlinear Solution are provided in the NXSTRAT bulk 
data entry. This includes parameters that control the solver 
selection, time integration values, convergence tolerances, contact 
settings, etc. An explanation of these parameters is found in the NX 
Nastran Quick Reference Guide. 
 
• Similarly, most of the global settings controlling the heat 
transfer or coupled solutions in Advanced Nonlinear Solution are 
provided in the TMCPARA bulk data entry. 
 

1.2.1  Choosing between Solutions 601 and 701 
 
• The main criterion governing the selection of the implicit 
(Solution 601) or explicit (Solution 701) formulations is the time 
scale of the solution. 
 
 • The implicit method can use much larger time steps since it is 
unconditionally stable. However, it involves the assembly and 
solution of a system of equations, and it is iterative. Therefore, the 
computational time per load step is relatively high. The explicit 
method uses much smaller time steps since it is conditionally 
stable, meaning that the time step for the solution has to be less 
than a certain critical time step, which depends on the smallest 
element size and the material properties. However, it involves no 
matrix solution and is non-iterative. Therefore, the computational 
time per load step is relatively low. 

ref. KJB
2

 
• For both linear and nonlinear static problems, the implicit 
method is the only option. 
 
• For heat transfer and coupled structural heat transfer problems, 
the implicit method is the only option. 
 
• For slow-speed dynamic problems, the solution time spans a 
period of time considerably longer than the time it takes the wave 
to propagate through an element. The solution in this case is 
dominated by the lower frequencies of the structure. This class of 
problems covers most structural dynamics problems, certain metal 
forming problems, crush analysis, earthquake response and 
biomedical problems. When the explicit method is used for such 
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problems the resulting number of time steps will be excessive, 
unless mass-scaling is applied, or the loads are artificially applied 
over a shorter time frame. No such modifications are needed in the 
implicit method. Hence, the implicit method is the optimal choice. 
 
• For high-speed dynamic problems, the solution time is 
comparable to the time required for the wave to propagate through 
the structure. This class of problems covers most wave propagation 
problems, explosives problems, and high-speed impact problems. 
For these problems, the number of steps required with the explicit 
method is not excessive. If the implicit method uses a similar time 
step it will be much slower and if it uses a much larger time step it 
will introduce other solution errors since it will not be capturing the 
pertinent features of the solution (but it will remain stable). Hence, 
the explicit method is the optimal choice.  
 
• A large number of dynamics problems cannot be fully classified 
as either slow-speed or high-speed dynamic. This includes many 
crash problems, drop tests and metal forming problems. For these 
problems both solution methods are comparable. However, 
whenever possible (when the time step is relatively large and there 
are no convergence difficulties) we recommend the use of the 
implicit solution method. 
 
• Note that the explicit solution provided in Solution 701 does not 
use reduced integration with hour-glassing. This technique reduces 
the computational time per load step. However, it can have 
detrimental effect on the accuracy and reliability of the solution. 
 
• Since the explicit time step size depends on the length of the 
smallest element, one excessively small element will reduce the 
stable time step for the whole model. Mass-scaling can be applied 
to these small elements to increase their stable time step. The 
implicit method is not sensitive to such small elements. 
 
• Since the explicit time step size depends on the material 
properties, a nearly incompressible material will also significantly 
reduce the stable time step. The compressibility of the material can 
be increased in explicit analysis to achieve a more acceptable 
solution time. The implicit method is not as sensitive to highly 
incompressible materials (provided that a mixed formulation is 
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used). 
 
• Higher order elements such as the 10-node tetrahederal, 20 and 
27 node brick elements are only available in implicit analysis. They 
are not used in explicit analysis because no suitable mass-lumping 
technique is available for these elements. 
 
• Model nonlinearity is another criterion influencing the choice 
between implicit and explicit solutions. As the level of nonlinearity 
increases, the implicit method requires more time steps, and each 
time step may require more iterations to converge. In some cases, 
no convergence is reached. The explicit method however, is less 
sensitive to the level of nonlinearity. 
 
Note that when the implicit method fails it is usually due to non-
convergence within a time step, while when the explicit method 
fails it is usually due to a diverging solution. 
 
• The memory requirements is another factor. For the same mesh, 
the explicit method requires less memory since it does not store a 
stiffness matrix and does not require a solver. This can be 
significant for very large problems. 
 
• Since Advanced Nonlinear Solution handles both Solution 601 
and Solution 701 with very similar inputs, the user can in many 
cases restart from one analysis type to the other. This capability can 
be used, for example, to perform implicit springback analysis 
following an explicit metal forming simulation, or to perform an 
explicit analysis following the implicit application of a gravity 
load. 
 It can also be used to overcome certain convergence difficulties 
in implicit analyses. A restart from the last converged implicit 
solution to explicit can be performed, then, once that stage is 
passed, another restart from explicit to implicit can be performed to 
proceed with the rest of the solution. 
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1.2.2  Units 
 

In Advanced Nonlinear Solution, it is important to enter all 
physical quantities (lengths, forces, masses, times, etc.) using a 
consistent set of units. For example, when working with the SI 
system of units, enter lengths in meters, forces in Newtons, masses 
in kg, times in seconds. When working with other systems of units, 
all mass and mass-related units must be consistent with the length, 
force and time units. For example, in the USCS system (USCS is 
an abbreviation for the U.S. Customary System), when the length 
unit is inches, the force unit is pound and the time unit is second, 
the mass unit is lb-sec2/in, not lb. 
 Rotational degrees of freedom are always expressed in radians.  

1.3  Structure of Advanced Nonlinear Solution 

• The input data for Advanced Nonlinear Solution follows the 
standard Nastran format consisting of the following 5 sections: 
 
1. Nastran Statement (optional) 
2. File Management Statements (optional) 
3. Executive control Statements 
4. Case Control Statements 
5. Bulk Data Entries 
 
 The first two sections do not involve any special treatment in 
Advanced Nonlinear Solution. The remaining three sections 
involve some features specific to Advanced Nonlinear Solution, as 
described below. 
 

1.3.1  Executive Control 
 
• Solution 601 is invoked by selecting solution sequence 601 in 
the SOL Executive Control Statement. This statement has the 
following form: 
 
SOL 601,N 
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where N determines the specific analysis type selected by Solution 
601. 
 Currently, static and direct time-integration implicit dynamic 
structural analyses are available as shown in Table 1.3-1. In 
addition, two analysis types are available for thermal or coupled 
thermal-mechanical problems. 
 
• Solution 701 is invoked by selecting solution sequence 701 in 
the SOL Executive Control Statement. This statement has the 
following form: 
 
SOL 701 
 
and is used for explicit dynamic analyses. 
 
• In many aspects Solution 601,106 is similar to Solution 106 for 
nonlinear static analysis. However, it uses the advanced nonlinear 
features of Solution 601. Likewise, Solution 601,129 is similar to 
Solution 129 for nonlinear transient response analysis. Solution 701 
provides an alternative to the implicit nonlinear dynamic analysis 
of Solution 601,129.  

 
 
 
 
 
 

N Solution 601 Analysis Type 

106 Static 
129 Transient dynamic 

153 Steady state thermal + static 
structural 

159 Transient thermal + dynamic 
structural1

 

1 N = 159 also allows either of the structure or the thermal parts to 
be static or steady state. 
 
 Table 1.3-1: Solution 601 Analysis Types 
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1.3.2  Case Control 
 
• The Case Control Section supports several commands that 
control the solution, commands that select the input loads, 
temperatures and boundary conditions, commands that select the 
output data and commands that select contact sets. Table 1.3-2 lists 
the supported Case Control Commands. 
 
 
 
 
 

Case Control Command Description 

Solution control  

SUBCASE1 Subcase delimiter 

TSTEP2 Time step set selection 

ANALYSIS3 Subcase analysis type solution 

Loads and boundary conditions  

LOAD Static load set selection 

DLOAD4 Dynamic load set selection 

SPC Single-point constraint set selection 

MPC Multipoint constraint set selection 

TEMPERATURE5

        TEMPERATURE(LOAD) 
        TEMPERATURE(INITIAL) 

Temperature set selection 
        Temperature load 
        Initial temperature 

IC Transient initial condition set selection 

BGSET Glue contact set selection 

BOLTLD Bolt preload set selection 

DMIG related 

B2GG Selects direct input damping matrices 

K2GG Selects direct input stiffness matrices 

M2GG Selects direct input mass matrices 

Element related  

EBDSET Element birth/death selection 

 
Table 1.3-2: Case Control Commands 
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Output related  

SET Set definition 

DISPLACEMENT Displacement output request 

VELOCITY Velocity output request 

ACCELERATION Acceleration output request 

STRESS Element stress/strain output request 

SPCFORCES Reaction force output request 

GPFORCE Nodal force output request 

GKRESULTS Gasket results output request 

TITLE Output title 

SHELLTHK Shell thickness output request 

THERMAL Temperature output request 

FLUX Heat transfer output request 

Contact related  

BCSET Contact set selection 

BCRESULTS Contact results output request 

Notes: 

1. Only one subcase is allowed in structural analysis Advanced Nonlinear 
Solution (N = 106, 129). In coupled TMC analyses (N = 153, 159), two 
subcases are required, one for the structural and one for the thermal sub-
model. 

2. TSTEP is used for all analysis types in Advanced Nonlinear Solution. In 
explicit analysis with automatic time stepping it is used for determining the 
frequency of output of results. 

3. Supports ANALYSIS = STRUC and ANALYSIS = HEAT for SOL 601,153 
and SOL 601,159. 

4. DLOAD is used for time-varying loads for both static and transient dynamic 
analyses. 

5. TEMPERATURE, TEMPERATURE(BOTH) and TEMPERATURE(MAT) 
are not allowed for Advanced Nonlinear Solution. Use 
TEMPERATURE(INIT) and TEMPERATURE(LOAD) instead. 

Table 1.3-2: Case Control Commands (continued) 
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1.3.3  Bulk Data 
 

• The Bulk Data section contains all the details of the model. 
Advanced Nonlinear Solution supports most of the commonly used 
Bulk Data entries. In many cases, restrictions are imposed on some 
of the parameters in a Bulk Data entry, and in some other cases, 
different interpretation is applied to some of the parameters to 
make them more suitable for nonlinear analysis. Several Bulk Data 
entries are also specific to Advanced Nonlinear Solution. 
 
• Table 1.3-3 lists the supported Bulk Data entries. 
 
 
 
 
 
 
 
 

Element Connectivity 

CBAR 
CBEAM 
CBUSH 
CBUSH1D 
CDAMP1 
CDAMP2 
CELAS1 
CELAS2 
CGAP 
CHEXA 
 

CMASS1 
CMASS2 
CONM1 
CONM2 
CONROD 
CPENTA 
CPLSTN3 
CPLSTN4 
CPLSTN6 
CPLSTN8 
 

CPLSTS3 
CPLSTS4 
CPLSTS6 
CPLSTS8 
CPYRAM 
CQUAD4 
CQUAD8 
CQUADR 

CQUADX 
CQUADX4 
CQUADX8 
CROD 
CTRIA3 
CTRIA6 
CTRIAR 
CTRIAX 

CTRAX3 
CTRAX6 
CTETRA 
RBAR 
RBE2 
RBE3 

Element Properties 

EBDSET 
EBDADD 
PBAR 
PBARL 

PBCOMP 
PBEAM 
PBEAML 
PBUSH 
PBUSH1D 

PCOMP 
PDAMP 
PELAS 
PELAST 
PGAP 

PLPLANE 
PLSOLID 
PMASS 
PPLANE 

PROD 
PSHELL 
PSOLID 
 

 
Table 1.3-3: Bulk Data entries supported by Advanced Nonlinear Solution 
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Material Properties 

CREEP 
MAT1 
MAT2 
MAT3 
MAT4 
MAT5 

MAT8 
MAT9 
MAT11 
MATCID 
MATG 

MATHE 
MATHEV 
MATHEM 
MATHP 
MATS1 
MATSMA 
 

MATT1 
MATT2 
MATT3 
MATT4 
MATT5 
MATT8 
MATT9 
MATT11 
 

MATTC 
MATVE 
PCONV 
RADM 
RADMT 
TABLEM1 
TABLES1 
TABLEST 
 

Loads, Boundary Conditions and Constraints 

BGSET 
BOLT 
BOLTFOR 
DLOAD 
FORCE 
FORCE1 
FORCE2 

GRAV 
LOAD 
MOMENT 
MOMENT1 
MOMENT2 

MPC 
MPCADD 
PLOAD 
PLOAD1 
PLOAD2 
PLOAD4 
PLOADE1 

PLOADX1 
RFORCE 
SPC  
SPC1 
SPCADD 
SPCD 

TABLED1 
TABLED2 
TEMP 
TEMPD 
TIC 
TLOAD1 

Heat Transfer Loads and Boundary Conditions 

BDYOR 
CHBDYE 
CHBDYG 

CONV 
QBDY1 
QBDY2 

QHBDY 
QVOL 
RADBC 

TEMPBC  

Contact 

BCPROP 
BCPROPS 

BCRPARA 
BCTADD 

BCTPARA 
BCTSET 

BLSEG 
BSURF 

BSURFS 

 
 

Table 1.3-3: Bulk Data entries supported by Advanced Nonlinear Solution 
(continued) 
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Direct Matrix Input 

DMIG     

Other Commands 

CORD1C 
CORD1R 

CORD1S 
CORD2C 

CORD2R 
CORD2S 

GRID 
NXSTRAT1

PARAM2

TMCPARA3

TSTEP4

Notes: 

1. NXSTRAT is the main entry defining the solution settings for Advanced 
Nonlinear Solution. 

2. Only a few PARAM variables are supported. Most are replaced by 
NXSTRAT variables. 

3. TMCPARA is the main entry defining the solution settings for heat 
transfer and TMC models. 

4. TSTEP is used for both static and dynamic analyses. 

Table 1.3-3: Bulk Data entries supported by Advanced Nonlinear Solution 
(continued) 

 
 
 

1.3.4  Terminology used in Advanced Nonlinear Solution 
 

The terminology used in Advanced Nonlinear Solution is for the most 
part the same as that used in other Nastran documents.  
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2. Elements 
 

• Advanced Nonlinear Solution supports most of the commonly 
used elements in linear Nastran analyses. Some of these elements 
are modified to be more suitable for nonlinear analysis. 
 
• The Advanced Nonlinear Solution elements are generally 
classified as line, surface, solid, scalar, or rigid elements. 
 
f Line elements are divided into 2 main categories – rod 
elements and beam elements. Rod elements only possess axial 
stiffness, while beam elements also possess bending, shear and 
torsional stiffness. 

 
f Surface elements are also divided into 2 main categories – 2-
D solids and shell elements. 

 
f 3-D solid elements are the only solid elements in Advanced 
Nonlinear Solution. 

 
f The scalar elements are spring, mass and damper elements. 

 
f R-type elements impose constraints between nodes, such as 
rigid elements. 
 
f Other element types available in Advanced Nonlinear 
Solution are the gap element, concentrated mass element, and 
the bushing element. 

 
• This chapter outlines the theory behind the different element 
classes, and also provides details on how to use the elements in 
modeling. This includes the materials that can be used with each 
element type, their applicability to large displacement and large 
strain problems, their numerical integration, etc. 
 
• More detailed descriptions of element input and output are 
provided in several other manuals, including: 
 

- NX Nastran Reference Manual 
- NX Nastran Quick Reference Guide 
- NX Nastran DMAP Programmer’s Guide 
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• Table 2-1 below shows the different elements available in 
Advanced Nonlinear Solution, and how they can be obtained from 
Nastran element connectivity and property ID entries. Restrictions 
related to Solution 701 are noted.  

 
 
 
 

Element 
Connectivity Entry 

Property ID Entry Advanced Nonlinear 
Solution Element 

Rod Elements 

CROD PROD 2-node rod element 

CONROD None 2-node rod element 

Beam Elements 

CBAR PBAR, PBARL 2-node beam element 

CBEAM PBEAM, PBEAML, 
PBCOMP 

2-node beam element 

Shell Elements3

CQUAD4 PSHELL1, PCOMP2 4-node quadrilateral shell 
element 

CQUAD8 PSHELL1, PCOMP2 4-node to 8-node quadrilateral 
shell element 

CQUADR PSHELL, PCOMP2 4-node quadrilateral shell 
element 

CTRIA3 PSHELL1, PCOMP2 3-node triangular shell 
element 

CTRIA6 PSHELL1, PCOMP2 3-node to 6-node triangular 
shell element 

CTRIAR PSHELL, PCOMP2 3-node triangular shell 
element 

 
Table 2-1: Elements available in Advanced Nonlinear Solution 
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2D Solid Elements4

CPLSTN3 PPLANE, PLPLANE 3-node triangular 2D plane 
strain element 

CPLSTN4 PPLANE, PLPLANE 4-node quadrilateral 2D plane 
strain element 

CPLSTN6 PPLANE, PLPLANE 6-node triangular 2D plane 
strain element 

CPLSTN8 PPLANE, PLPLANE 8-node quadrilateral 2D plane 
strain element 

CPLSTS3 PPLANE, PLPLANE 3-node triangular 2D plane 
stress element 

CPLSTS4 PPLANE, PLPLANE 4-node quadrilateral 2D plane 
stress element 

CPLSTS6 PPLANE, PLPLANE 6-node triangular 2D plane 
stress element 

CPLSTS8 PPLANE, PLPLANE 8-node quadrilateral 2D plane 
stress element 

CQUAD PLPLANE 4-node to 9-node quadrilateral 
2D plane strain element with 
hyperelastic material 

CQUAD4 PLPLANE, PSHELL1 4-node quadrilateral 2D plane 
strain element 

CQUAD8 PLPLANE, PSHELL1 4-node to 8-node 2D plane 
strain element 

CTRIA3 PLPLANE, PSHELL1 3-node triangular 2D plane 
strain element 

CTRIA6 PLPLANE, PSHELL1 3-node to 6-node triangular 
2D plane strain element 

 
Table 2-1: Elements available in Advanced Nonlinear Solution (continued) 
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2D Solid Elements (continued) 

CQUADX PLPLANE 4-node to 9-node quadrilateral 
2D axisymmetric element 
with hyperelastic material 

CTRIAX PLPLANE 3-node to 6-node triangular 
2D axisymmetric element 
with hyperelastic material 

CQUADX4 PSOLID, PLSOLID 4-node quadrilateral 2D 
axisymmetric element 

CQUADX8 PSOLID, PLSOLID 8-node quadrilateral 2D 
axisymmetric element 

CTRAX3 PSOLID, PLSOLID 3-node triangular 2D 
axisymmetric element 

CTRAX6 PSOLID, PLSOLID 6-node triangular 2D 
axisymmetric element 

3D Solid Elements5

CHEXA PSOLID, PLSOLID  8-node to 20-node brick 3D 
solid element 

CPENTA PSOLID, PLSOLID  6-node to 15-node wedge 3D 
solid element 

CTETRA PSOLID, PLSOLID  4-node to 10-node tetrahedral 
3D solid element 

CPYRAM PSOLID, PLSOLID  5-node to 13-node pyramid 
3D solid element 

Scalar Elements 

CELAS1; CELAS2 PELAS; None Spring element 

CDAMP1; CDAMP2 PDAMP; None Damper element 

CMASS1; CMASS2 PMASS; None Mass element 
 

Table 2-1: Elements available in Advanced Nonlinear Solution (continued) 
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R-Type Elements 

RBAR None Single rigid element 

RBE2 None Multiple rigid elements 

RBE3 None Interpolation constraint 
element 

Other Elements 

CGAP PGAP 2-node gap element 

CONM1, CONM2 None Concentrated mass element 

CBUSH1D PBUSH1D Rod Type Spring-and-Damper 
Connection 

CBUSH PBUSH Generalized Spring-and-
Damper Connection 

 
 
Notes: 
 
1. CQUAD4, CQUAD8, CTRIA3, and CTRIA6 with a PSHELL property ID are 

treated as either 2D plane strain elements or shell elements depending on the 
MID2 parameter. 

2. Elements with a PCOMP property ID entry are treated as multi-layered shell 
elements. These elements are not supported in Solution 701. 

3. Only 3-node and 4-node single layer shells are supported in Solution 701. 
4. 2-D solid elements are not supported in Solution 701. 
5. Only 4-node tetrahedral, 6-node wedge and 8-node brick 3-D solid elements are 

supported in Solution 701. 
 

Table 2-1: Elements available in Advanced Nonlinear Solution (continued) 
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• Table 2-2 lists the acceptable combination of elements and 
materials for Solution 601. Thermal effects in this table imply 
temperature dependent material properties. Thermal strains are 
usually accounted for in isothermal material models. 

 
 
 
 
 
 

 Rod Beam Shell 2D Solid 3D Solid 

Elastic isotropic 9 9 9 9 9 

   ...Thermal 9  9 9 9 

   ...Creep 9  9 9 9 

Elastic orthotropic   9 9 9 

   ...Thermal   9 9 9 

Plastic isotropic 91 91 9 9 9 

   ...Thermal 9  9 9 9 

   ...Creep 9  9 9 9 

Hyperelastic    9 9 

Gasket     9 
Nonlinear elastic 
isotropic 9  9 9 9 

Shape memory 
alloy 9  9 9 9 

Viscoelastic 9  9 9 9 
 

 
Note:  

 
1. No thermal strains in these plastic isotropic material models. 

 
Table 2-2: Element and material property combinations in Solution 601 
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• Table 2-3 lists the acceptable combination of elements and 
materials for Solution 701. Thermal effects in this table imply 
temperature dependent material properties. Thermal strains are 
usually accounted for in isothermal material models. Note that 
interpolation of temperature dependent material properties is only 
performed at the start of the analysis in Solution 701. 

 

 

 Rod Beam Shell 2D Solid 3D Solid 

Elastic isotropic 9 9 9  9 

   ...Thermal 9  9  9 

   ...Creep      

Elastic orthotropic   9  9 

   ...Thermal   9  9 

Plastic isotropic 91 91 9  9 

   ...Thermal 9  9  9 

   ...Creep      

Hyperelastic     9 

Gasket     9 
Nonlinear elastic 
isotropic 9     

Shape memory 
alloy      

Viscoelastic      
 

 
Note:  

 
1. No thermal strains in these plastic isotropic material models. 

 
 Table 2-3: Element and material property combinations in Solution 701 
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2.1  Rod elements 

 
2.1.1  General considerations 

 
• Rod elements are generated using the CONROD and CROD 
entries. These line elements only possess axial stiffness. Fig. 2.1-1 
shows the nodes and degrees of freedom of a rod element. Note 
that the rod element only has 2 nodes. 

 
Z

Y

�

w2

u1

(u, v, w) are nodal translational
degrees of freedom

Figure 2.1-1: Rod element

G2

v2
�w1

u2G1

X

v1

 
 
  

• Note that the only force transmitted by the rod element is the 
longitudinal force as illustrated in Fig. 2.1-2. This force is constant 
throughout the element. 
 

 

 
Z

Y
X

�

P

P

area A

  

ref. KJB
Sections 5.3.1,

6.3.

Stress constant over

cross-sectional area

Figure 2.1-2: Stresses and forces in rod elements 

3
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2.1.2  Mate
 

•  

 
• he rod elements can be used with small displacement/small 

mall 

d rotations can be very large. In all cases, the 
ross-sectional area of the element is assumed to remain 

strain is equal to the longitudinal displacement 
divided by the original length. 

les 2-2 and 
 be used with both the small and large displacement 

s.  
 

l for rod elements. Thermal strains can be obtained 
y switching to a temperature dependent isotropic plasticity 

2.1.3  Num
 

2.1.4  Mas
 

 calculated using Eq. (4.25) in ref. 
JB, p. 165. 

 mass matrix for the rod element is formed by 
ividing the element’s mass M among its nodes. The mass assigned 

rial models and formulations 

See Tables 2-2 and 2-3 for a list of the material models that are
compatible with rod elements. 

T
strain or large displacement/small strain kinematics. In the s
displacement case, the displacements and strains are assumed 
infinitesimally small. In the large displacement case, the 
displacements an
c
unchanged, and the 

All of the compatible material models listed in Tab
2-3 can
formulation

• Thermal strains are not available in the isotropic plasticity 
material mode
b
material model. 
 
erical integration 

• The rod elements use one point Gauss integration. 
  

s matrices 

• The consistent mass matrix is
K
 
• The lumped
d

to each node is iM ⎛⋅
L⎝ ⎠

fraction of the total element length associated with element node

i.e., for th

⎞
⎜ ⎟ , in which L = total element length,  = 

 i 

e 2-node rod element, 

i

1 2
L

= and 2 2
L

=( ). The 

element has no rotational mass. 
 



 2.1:  Rod elements 
 

 
 
Advanced Nonlinear Solution ⎯ Theory and Modeling Guide 23 

 
2.1.5  Heat

! , heat capacity 
d

 is present at each node. 

 

 

 
 also be used as a general thermal link element 

et

2.2  Beam

EAM 

using the PBEAM, PBEAML or PBCOMP entries. See Tables 2-2 
and
the
 
• he beam element is a 2-node Hermitian beam with a constant 
cro e own in 
Fig. 2.2-1. The r-direction in the local coordinate sy  is along 
the line connecting the nodes GA and GB. The s-direction is based 
on the . 
 e (see Fig. 
2.2

 

• The same lumped mass matrix is used for both Solution 601 and 
Solution 701. 

 transfer capabilities 
 

 The rod element supports 1-D heat conductivity
an  heat generation features in heat transfer and coupled TMC 
analyses. 
 
! One temperature degree of freedom
 
! The heat capacity matrix can be calculated based on a lumped or 
consistent heat capacity assumption. 

! In the lumped heat capacity assumption, each node gets a heat 
capacity of cρAL/2. 

 This element can!

b ween any two points in space. 

 elements 

• Beam elements are generated using the CBAR and CB
entries. The properties for a CBAR entry are defined using PBAR 
or PBARL entries while the properties for CBEAM are defined 

 2-3 for a list of the material models that are compatible with 
 beam element. 

T
ss-section and 6 degrees of freedom at ach node as sh

stem

v vector defined in the CBAR or CBEAM entry
The displacements modeled by the beam element ar
-2): 

f Cubic transverse displacements v  and w  (s- and t-direction
displ

 
acements) 
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f Linear longitudinal displacements u  (r-direction 
displacement) 
 
f Linear torsional displacements rθ  and warping 
displacements 

 
 • The element is formulated based on the Bernoulli-Euler beam

theory. 
 
• The following PBARL and PBEAML cross-sections are 
supported by Advanced Nonlinear Solution: ROD,

 

 TUBE, I, 
N, T, BOX, BAR, H, T1, I1, CHAN1, CHAN2, and T2. 

• Axial forces applied to the beam are assumed to be acting along 
the beam’s centroid and hence cause no bending. Also shear forces 
pplied to the beam are assumed to be acting through the beam’s 
hear center and hence cause no twisting. 

 In order to model the bending due to an off-centroidal axial 
force or a shear force applied away from the shear center, the 
resulting moments can be applied directly or the forces can be 
applied at an offset location using rigid elements. 

 

      

CHA
 

a
s

�

�

s (y )elem

t (z )elem

node GA

r (x )elem

node GB

v

Plane 1

nt

End B

 
 
 
 

End A

Figure 2.2-1: Beam eleme
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Figure 2.2-2: Conventions used for 2-node Hermit

 
• Stress and strain output is not supported in beam elements. 

• Off-centered beam elements can be modeled using rigid 
elements (see Fig. 2.2-3).  
 
• The beam element formulation used depends on the selecte
material (see Tables 2-2 and 2-3). 
 
• Two basic formulations exist in Advanced Nonlinear Solution, 

I-beam
I-beam

Rigid panel

Hollow square section

Beam element

Rigid elements

Physical problem:

Figure 2 3

 

Finite element model:

Beam elements

.2- : Use of rigid elements for modeling off-centered
beams
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Elastic ee 

2.2.1  Elas
 

displacem
 

The ela terial 

ept in 

 discussed 
 

 
ctural 

isplacement formulation, the displacements and 
, 
 

motion. 

 
     E Young's modulus 
   

•  beam elements can be used to simulate bolts. S
Section 10.7 for details. 

 
tic beam element 

• Elastic beam elements can be used with 
 
 fsmall displacement/small strain kinematics, or 
  
 flarge displacement/small strain kinematics. 
 
 • A TL (Total Lagrangian) formulation is used in the case of large 

ents. 

stic beam element only supports the isotropic ma• 
model. 
 
• The element’s force vector and stiffness matrix (exc

olution 701) are evaluated in closed form for both small and large S
displacement formulations. The stiffness matrix used is

detail in the following reference: in

ref. J.S. Przemieniecki, Theory of Matrix Stru
Analysis, McGraw-Hill Book Co., 1968. 

 
 In the large d•

rotations are taken into account through a co-rotational framework
in which the element rigid body motion (translations and rotations)
s separated from the deformational part of the i

Note that the element stiffness matrix is defined by the 
following quantities: 

 = 
  ν  = Poisson's ratio 
  L = length of the beam 

, ,r s t

   
    I I I  = moments of inertia about the local principal axes r,  

       s, and t 
      A = cross-sectional area 

     ,sh sh
s tA A  = effective shear areas in s and t directions 
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This stiffness matrix is transformed from the local degrees of 
freedom (in the r, s, t axes) to the global coordinate system and is 
then assembled into the stiffness matrix of the complete structure. 
 In large displacement analysis, the large displacements and 
rotations are taken into account through a co-rotational framework, 
in which the element rigid body motion (translations and rotations) 
is separated from the deformational part of the motion. For more 
information, see the following reference: 
 

ref: B. Nour-Omid and C.C. Rankin, Finite rotation analysis 
and consistent linearization using projectors, Comput. 
Meth. Appl. Mech. Engng. (93) 353-384, 1991. 

 
2.2.2  Elasto-plastic beam element 

 
• Elasto-plastic beam elements can be used with the  
 
 fsmall displacement/small strain kinematics, or  
 
 flarge displacement/small strain kinematics. 
 
• An updated Lagrangian formulation is used in the case of large 
displacements. 
 
• Only isotropic bilinear plasticity is supported. Thermal strains 
are not admissible for the elasto-plastic beam. 
 
• The nonlinear elasto-plastic beam element can only be 
employed for circular (ROD, TUBE) and rectangular (BAR) cross-
sections. 

 
• The beam element matrices are formulated using the Hermitian 
displacement functions, which give the displacement interpolation 
matrix summarized in Table 2.2-2. 
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• The element’s stiffness matrix and load vector are then 
transformed from the local coordinate system used above to the 
displacement coordinate system. 
 
• Shear deformations can be included in beams by selecting a 
non-zero K1 or K2 in the PBAR or PBEAM entries. Constant shear 
distortions 

r-direction force

s-direction fo

node GA

t node GA
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Figure 2.2-4: Elasto-plastic beam element

rsγ  and rtγ  along the length of the beam are assumed, 
as depicted in Fig. 2.2-5. In this case the displacement interpolation 
matrix of Table 2.2-2 is modified for the additional displacements 
corresponding to these shear deformations. 
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�rs �rt

r r

s

Figure 2.2-5: Assumptions of shear deformations through element

thickness for nonlinear elasto-plastic beam element

t

 
 

 
 

• The interpolation functions in Table 2.2-2 do not account for 
warping in torsional deformations. The circular section does not 
warp, but for the rectangular section the displacement function for 
longitudinal displacements is corrected for warping as described in 
the following reference: 

 
ref. K.J. Bathe and A. Chaudhary, "On the Displacement 

Formulation of Torsion of Shafts with Rectangular 
Cross-Sections", Int. Num. Meth. in Eng., Vol. 18, pp. 
1565-1568, 1982. 

 
• The derivation of the beam element matrices employed in the 
large displacement formulation is given in detail in the following
paper: 

 
ref. K.J. Bathe and S. Bolourchi, "Large Displacement 

Analysis of Three-Dimensional Beam Structures," Int. J. 

 

otal 
rmulation, and hence the updated Lagrangian 

rmulation is employed in Solution 601. 
 

• trices in elasto-plastic analysis are calculated 
using numerical integration.   The integration orders are given in 

. 

 

ref. KJB
Section 6.6.

 

Num. Meth. in Eng., Vol. 14, pp. 961-986, 1979. 

The derivations in the above reference demonstrated that the 
updated Lagrangian formulation is more effective than the t
Lagrangian fo
fo

All element ma

Table 2.2-3. The locations of the integration points are given in Fig
2.2-6.  

 

3
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Coordinate Section Integration 
scheme 

Integration 
order 

 

r Any Newton-Cotes 5 

Rectangular 7 
s 

Pipe 
Newton-Cotes 

3 

Rectangular Newton-Cotes 7 t 

rule 

or 
θ Pipe 

Composite 
trapezoidal 8 

 
plastic beam analysis 

 
Table 2.2-3: Integration orders in elasto-

s

sHEIGHT

�

Pipe section

WIDTH

t

Rectangular section

r = 0r = -1 r = 1

r

s

� ����

t

a) Integration point locations in r-direction

Integration point locations in s-direction

�

�

b)

Figure 2.2-6: Integration point locations in elasto-plastic beam

analysis
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Pipe section (3-D action)

Rectangular section
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s
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�
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�

c) Inte s in t-directiongration point location

�
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�
�

 
 
 

 is based on the classical 
ow theory with the von Mises yield condition and is derived from 

assumptions

�
�

Figure 2.2-6: (continued)

 
• The elasto-plastic stress-strain relation
fl
the three-dimensional stress-strain law using the following 

: 
 

-  the stresses ssτ  and ttτ  are zero 
- the strain stγ  is zero 

 
Hence, the elastic-plastic stress-strain matrix for the normal stress 

rrτ  and the two shear stresses rsτ  and rtτ  is obtained using static 
condensation. 
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2.2.3  Mas
 

ped 

 
.  

 The lumped mass for translational degrees of freedom is 

licit analysis (Solution 601) 

s matrices  

• The beam element can be used with a lumped or a consistent 
mass matrix, except for Solution 701 which always uses a lum
mass. 
 
• The consistent mass matrix of the beam element is evaluated in 
closed form, and does not include the effect of shear deformations
 

/ 2M  •
where M is the total mass of the element. 
 The rotational lumped mass for imp

is 
2
3 2

rr
rr

M IM
A

= ⋅ ⋅ , in which Irr = polar moment of inertia of the 

eam cross-section and A = beam cross-sectional area. This lumped 
ass is applied to all rotational degrees of freedom. 

otatio ass for explicit analysis (Solution 701) 

b
m
 The r

is

nal lumped m

3rr 2
mIMM
A

= ⋅ ⋅ re Im um om

inertia of the beam

 whe  is the maxim  bending m ent of 

 ( )max , ttm ssI I I= . This lum ass is 
applied to all rotational degrees of edom. Note that this scaling 
of rotational masses ensures that the rotational degrees of freedom 
do not affect the critical stable tim ep of the el ent. 
 

eat tra  capabilit  
 

2.3  Shell e

d 
of 

, CTRIA3, CQUAD8, 
CTRIA6, CQUADR, or CTRIAR. The elements are shown in Fig. 

ped m
 fre

e st em

2.2.4  H nsfer ies 

• The beam element has the same heat transfer capabilities of the 
rod element. See Section 2.1.5 for details. 
 

lements 

• Shell elements in Advanced Nonlinear Solution are generate
when a PSHELL or PCOMP property ID entry references one 
the following Nastran shell entries: CQUAD4

2.3-1. 
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(b) 4-node elem
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�

�

(d) 8-node element

ent(a) 3-node element

�

�

�
��

�

�

�
�

(c) 6-node element
�

ll elements in Advanced Nonlinear Solution 
 
• 
PC MP p
 

 the correspondence between the 
different shell elem
 
• ly supports 3 ered 
she

 
 

Shell elem

Figure 2.3-1: She

The PSHELL entry results in a single-layered shell, while 
roduces a composite shell. O

• Shell elements are classified based on the number of nodes in 
the element. Table 2.3-1 shows

ents and the NX element connectivity entries. 

Solution 701 on -node and 4-node single-lay
ll elements. 

ent  NX element connectivity entry 

3-node  CTRIA3, CTRIAR 
4-node  CQUAD4, CQUADR 
6-node1  CTRIA6 
8-node1  CQUAD8 

1  CQUAD829-node
 
Notes: 
1.  nly for Solution 601 
2. ith ELCV = 1 in NXSTRAT entry 
 
Table 2.3-1: Correspondence between shell elements and NX 

element connectivity 

O
W
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• The extra middle node in the 9-node shell element is 
automatically added by the program when ELCV is set to 1 in the 
NXSTRAT entry. This extra node improves the performance of the 
shell element. The boundary conditions at the added node are 
predicted from the neighboring nodes.  

 
• Incompatible modes (bubble functions) can be used with 4-node 
shell elements. It can be set through ICMODE in the NXSTRAT 
entry. Additional displacement degrees of freedom are introduced 
which are not associated with nodes; therefore the condition of 
displacement compatibility between adjacent elements is not 
satisfied in general. The addition of the incompatible modes 
(bubble functions) increases the flexibility of the element, 
especially in bending situations. For theoretical considerations, see 
reference KJB, Section 4.4.1. Note that these incompatible-mode 

hat 
iorate the element performance when 

incompatible modes are used. 
 The incompatible modes feature can only be used with 4-node 
single layer shell elements. The feature is available in linear and 
nonlinear analysis.  
 

bilities availab  

Shell 
element di

s mulation formulation functions 
n 

701 

elements are formulated to pass the patch test. Also note t
element distortions deter

• Table 2.3-2 lists the features and capa le for the
shell element types mentioned above. 
 
 
 
 
 

Large 
splacement/ 
mall strain 

Large strain 
ULJ 

for

Large 
strain ULH Bubble Solutio

3-node 9 9 9  9 

4-node 9 9 9 9 9 

6-node 9 9    
8-node 
9-node 

9
9     
9 9 9   

 
Table 2.3-2: Features available for shell elements 
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2.3.1  Basic assumptions in element formulation 
 

• The basic equations used in the formulation of the shell 
elements in Advanced Nonlinear Solution are given in ref. KJB. 
These elements are based on the Mixed Interpolation of Tensorial 
Components (MITC). Tying points are used to interpolate the 
transverse shear strain and the membrane strains if necessary. 

• The shell element formulation treats the shell as a three-
dimensional continuum with the following two assumptions used in 
the Timoshenko beam theory and the Reissner-Mindlin plate 

Assumption 1:  Material particles that originally lie on a 
straight line "normal" to the midsurface of the structure remain 
on that straight line during deformation. 

dsurface of the structure is zero. 
 

o beam, and 

hese mpt
ere below 

sis 

he shell element matrices the following 
o

 

m ft 
e t) 

l" 

These elements show excellent performance. 
 

theory: 
 

 
Assumption 2:  The stress in the direction normal to the 
mi

For the Tim shenko beam theory, the structure is the 
for the Reissner/Mindlin plate theory, the structure is the plate 
under consideration. In shell analysis, t  assu ions 
correspond to a very general shell theory. See the ref nce 
for more details: 

 
ref.  D. Chapelle and K.J. Bathe, The Finite Element Analy

of Shells — Fundamentals, Springer, 2003. 
 

• In the calculations of t
ge metric quantities are used: 

f The coordinates of the node k that lies on the shell element 
idsurface at  , 1, 2,3t k

ix i =   (see Fig. 2.3-2); (the le
superscript denotes the configuration at tim
 
f The director vectors  t k

nV  pointing in the direction "norma
to the shell midsurface 
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f The shell thickness, ka , at the nodal points measured in the 

direction of the director vectors  t k
nV  (see Fig. 2.3-3). 

ref. KJB
Fig. 5.33
page 437
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Figure 2.3-2: Some conventions for the shell element; local

numbering; local element coordina
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Figure 2.3-3: Shell degrees of freedom at node k  
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• Based on these quantities the geometry of the shell is 
interpolated as follows: 

 

1 1
( 1, 2,3)

2

q q
tt t k k

i k i k k ni
k k

tx h x a h V i
= =

= + =∑ ∑  

 
where q is the number of element nodes,  are the 

components of the shell director vector   are the 
2-D interpolation functions. 
 
• At the element level the shell has 5 independent degrees of 
freedom per node: 3 displacements about the displacement 
coordinate system resulting from the displacement of the shell 
midsurface and 2 rotations resulting from the motion of the shell 
direction vector : 
 

1, 2,3( )t k
niV i =

t k
nV  and ( , )kh r s

k
nV

( )0

1 12

q q
t t k t k

i k i k k ni
k k

tu h u a h V V
= =

= + −∑ ∑  k
ni

 
The motion of the director vector at node k is described using 2 

 

rotational degrees of freedom about 1
kV and 2

kV which are 2 axes 
perpendicular to the shell director k

nV as shown in Fig. 2.3-3. 

1

k×Y V

2n

2 1
k k k

n

k n
k

=
×

V
Y V

 

 
= ×V V V  

For the special case when the k
nV  vector is parallel to the Y axis, 

the program uses the following conventions: 

 

 

1 2     when k k k
n≡ ≡ ≡ +V Z V X V Y  

 
 and 
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1 2     when k k k
n≡ − ≡ ≡ −V Z V X V Y  

The two rotational degrees of freedom named k

 
α  and kβ  are abo

axes kV k

ut 
 and V  respectively. 

     When using the large displacement formulations, the definitions 
t time = 0 (in the initial 

 nod nts,  is 

1×V V . 
Note that a shell node may however be assigned 3 rotational 

ational 
 coordinate 

ys

• 
ctor 

ote that in the finite element solution, the vector  is not 
nec

4(b)). 

 

) is imposed to be zero. This is achieved by using the stress-

1 2

of  1
kV  and  2

kV  are only used a
configuration) after which the vectors t k

nV  and 1
t kV  are updated 

using incremental rotations at the al poi and 2
t kV

calculated by the cross-product 2
t k t k=V t k

n

 
degrees of freedom. In this case, the element’s two rot
degrees of freedom are transformed to the displacement
s tem before assembly. 
 

Assumption 1 on the kinematic behavior of the shell enters the 
finite element solution in that the particles along the director ve
t

nV  (interpolated from the nodal point director vectors t k
nV ) 

remain on a straight line during deformation.  
t

nVN
essarily exactly normal to the shell midsurface. Fig. 2.3-4(a) 

demonstrates this observation for a very simple case, considering 
the shell initial configuration. Furthermore, even if nV  is 
originally normal to the shell midsurface, after deformations have 
taken place this vector will in general not be exactly perpendicular 
to the midsurface because of shear deformations (see Fig. 2.3-

 
• The assumption 2 on the stress situation enters the finite 
element solution in a manner that is dependent on the formulation 
employed: 

t

 All formulations except for the large displacement/large strain 
shell element:  The stress in the t-direction (i.e., in the direction of 
t Vn

strain relationship in the , ,r s t  coordinate system, shown in Fig. 
2.3-5(a), with the condition that the stress in the direction 

ref. KJB
Section 5.4.2

page 440
 

t is zero. 
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( )L2 �
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Initial configuration
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L1 + L2
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0 k
nV

0 k+1
nV

0
nV

L1 L2

a) D

0
nV

t
Vn

ue to initial geometry

b) Due to displacements and deformations (with shear)

F

 
 

e 
-direction (not necessarily in the direction of  ) is imposed to 
 zero. This is achieved by using the stress-strain relationship in 
e  coordinate system, shown in Fig. 2.3-5(b), with the 

 

igure 2.3-4: Examples of director vectors not normal to the shell

midsurface  

 Large displacement/large strain shell element:  The stress in th
t̂ t

nV
be

 ˆˆ ˆ, ,r s tth
condition that the stress in the direction t̂  is zero. 
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Figure 2.3-5: Local coordinate systems in shell element  
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• The transverse shear deformations are assumed by default to be 
constant across the shell thickness. The use of the correction factor 
of 5/6 can be specified to improve the prediction of the 
displacement response, for the linear elastic and linear orthotropic 
models. 

 
• The interpolation of the geometry of the shell element is always 
as described above, but for a specific solution time the current 
coordinates of the midsurface nodal points are used, and the current 
director vectors are employed. The midsurface nodal point 
coordinates are updated by the translational displacements of the 
nodes and the director vectors are updated using the rotations at the 
nodes (rotation increments in large displacement analysis). 

 
• The transverse shear deformations are assumed to be constant 
across the shell thickness. 

 
• In large displacement analysis, the midsurface nodal point 
coordinates are updated by adding the translational displacements 
of the nodes, and the director vectors are updated using the 
incremental rotations at the nodes by applying the large rotation 
update transformation described in p. 580 of ref. KJB (Exercise 

 
2.3.2  Material models and formulations 

 
 See Tables 2-2 and 2-3 for a list of the material models that are 

 

displacement/small strain case, the displacements 
and rotations are assumed to be infinitesimally small. Using a 

 

ref. KJB
pp. 399, 440

 

ref. KJB
Section 6.6

ref. KJB
pp. 399, 440

 

6.56). 

•
compatible with shell elements. 

• The shell element can be used with  
 
 f small displacement/small strain kinematics,  
 f large displacement/small strain kinematics, or 
 f large displacement/large strain kinematics.  
 

In the small 

linear material results in a linear element formulation, and using a 
nonlinear material results in a materially-nonlinear-only 
formulation. 
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and rotations can be large, but the strains are assumed to be small. 
In this case, a TL formulation is used. 

ls can be 
eit  
for
UL
for al strain 
for step should be small (< 1%). The ULH formulation 
requires more computations, however, it has no such restriction on 
the

 used 
wi rial. 
See Table 2.3-2 for a list of the supported shell elements. 

 
2.3.3  Shel o

 
dom 

m. 

The criterion for determining whether a shell node is assigned 5 
or 6 degrees of freedom is as follows. 5 degrees of freedom are 
initially assigned to all shell midsurface nodes. The following cases 

 the node to 6 degrees of freedom: 
 

f Geometry. Shell elements at that node intersecting at an 

XSTRAT entry). 
 

 

- applied moment at the node 
 

- rotational fixed boundary condition at the node 
 

- rigid link connected to the node 
 

In the large displacement/small strain case, the displacements 

The large displacement/large strain formulation for shel
her a ULJ (updated Lagrangian Jaumann) formulation or a ULH
mulation (updated Lagrangian Hencky) depending on the 
FORM parameter in the NXSTRAT entry. In the ULJ 
mulation, the total strains can be large, but the increment
 each time 

 size of the incremental strains.  
The large displacement/large strain kinematics can be only

th single layer shell elements with an isotropic plastic mate

l n dal point degrees of freedom  

• Shell nodes can have either 2 or 3 rotational degrees of free
which results in nodes having either 5 or 6 degrees of freedo
 
• 

change

angle greater than a specified tolerance (SDOFANG parameter 
in the N

f Other elements. If the node also has other elements with 
rotational degrees of freedom, i.e., beam elements, rotational 
springs, rotational masses or rotational dampers. 
 

f Rotational loads, constraints or boundary conditions. 
This includes the following cases: 
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- constraint equation involving constrained rotations 
connected to the node 
 

- enforced rotations at the node 
 

• Shell nodes with 6 degrees of freedom may be a potential source 
for singularity. In this case, very weak springs are automatically 
added to prevent the singularity. The cases in which this happens 
are discussed later in this section. 
 
• Fig. 2.3-6 shows examples of 5 and 6 degree of freedom shell 
nodes. 
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No

7

8
9

6

6

5

No

Yes

No

2.3-6: Examples of shell nodes with 5 or 6 degrees of freedom
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l nodes, the 
translations uk, vk, wk are referred to the chosen displacement 
coo

5 degrees of freedom node: A node "k" that is assigned 5 degrees 
of freedom incorporates the following assumption: 

 
f 

ass
vec al vectors (one normal 
vec
no
 hed to the node have oppositely 

• Note that for both 5 and 6 degree of freedom shel

rdinate system. 
 

Only one director vector (denoted at time = 0 as 0 k
nV ) is 

ociated with the node. The program calculates the director 
or by taking the average of all normt

tor is generated per shell element attached to node k) at the 
de. This is illustrated in Fig. 2.3-7. 
If two (or more) elements attac

directed normals, the program reverses the oppositely directed 
normals, so that all normals attached to the node have (nearly) the 
same direction. 
 
 

0 k
nV

0 k
nV

element 1

element 1
element 2

element 2

k

k k

�

�

�

� �

�

0 k
nV is the average of all element director vectors

0 k
nV

�

Figu 2.3-7: 5 degree of freedre om

at node k

shell node with unique vector
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de "k" that is assigned 6 degrees 
of freedom incorporates the following assumption: 

 
The program generates as many normal vectors at node k as 

there are shell elements attached to the node. Hence each individual 
hell element establishes at node k a vector normal to its 
idsurface. This is illustrated in Fig. 2.3-8. The components of the 

shell element matrices corresponding to the rotational degrees of 
freedom at this node are first formulated in the local midsurface 
system defined by the normal vector and then rotated to the 
displacement coordinate system. 

 

6 degrees of freedom node: A no

 f

s
m

0 k
nV

element 1

0 k
nV

element 2

element 1

element 1

element 2

element 2

k

k k

�

�

� �

�

�

�

director for element 2
director for element 1

Figure 2.3-8: 6 degree of freedom shell node with separate director

ch vector is used as a director

ent)  
 
The three rotational degrees of freedom a erred to the 

r constrained. 

ngu l nodes 

there may be a singularity at one of 

vectors at node k (ea

vector for the respective elem

• t node k ref
displacement coordinate system can be free o

 
Si larity at 6 degree of freedom shel
 

d to have 6 degrees of freedom due to • When a shell node is force
asons explained above, the re
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is case, a weak rotational 
. This is done 

automatically by Advanced Nonlinear Solution and usually does 
not require user intervention. The stif
a small fraction of the average rotational stiffnesses at the shell 

ode. This fraction is can be changed via the DRILLKF parameter 

f Other elements. Beam-stiffened shells will have a 
singularity at the shell nodes only if the beam is perpendicular 
to a flat shell surface. Otherwise, a singularity can still exist in 

ions. All 

sin
deg

•  
at a h f the factors 

 

the rotational degrees of freedom. In th
spring is added to the 3 rotational degrees of freedom

fness of the spring is set to be 

n
in NXSTRAT. 

 
• Not all the cases that lead to a shell node possessing 6 degrees 
of freedom (listed at the beginning of this section) may introduce a 
singularity at the node. 
 
f Geometry. No potential singularity exists in this case, since 
the shell is curved. 
 

the model if the beam is not properly restrained (see Fig. 2.3-9 
(a)). The same applies to rotational springs, masses and 
dampers. 
 
f Rotational loads, constraints or boundary condit
the items listed earlier for this feature result in a potential 

gularity (see Fig. 2.3-9 (b)) except when all rotational 
rees of freedom at the node are fixed. 

 
If multiple factors lead to the presence of 6 degrees of freedom

ell node, no singularity is present if any o s
eliminates the singularity. For example, if a shell node has an 
applied moment and is attached to non-perpendicular beam 
elements there is no singularity.  
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b) Moment applied in shell normal direction.

Reactions at fixities

Moment causes
infinite rotation.

are zero.

t
nV

Mzx
y

z

a) Structural element/rigid link attached to node,

Zero pivot in
stiffness matrix.

F
t

nV

structural element/rigid link is unsupported.

Figure 2.3-9: Flat shell with 6 DOFs at a node with singularity 
 

 
 

 

res 
 

 
his example). If the beam intersects the shells at an 

ngle, this singularity is not present. 

 
 

• Fig. 2.3-6 shows examples where shell singularity may or may
not occur. 

• The singularity that may result from beams attached to shells 
requires some clarification. If a beam connects two shell structu
as shown in Fig. 2.3-10, and it is perpendicular to both shells, then
the beam is free to rotate about this perpendicular direction (the
z-direction in t
a
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x
y

z

Beams

Shell elements

Not perpendicular
to shells

ular
to both shells

Figure 2.3-10: Beams intersecting shell elements

Perpendic

 

l nodes using 
s own 

e 
ements, and these moments will cause 

quilibrating reactions at the fixities. The wel ments also 
o zero 

 
 
• An alternative to using the drilling stiffness option is to connect 
the 6 DOF nodes on flat shells to neighboring shel
oft beam elements (so-called “weld elements”). This idea is sh

in Fig 2.3-11. Then moments applied into the t
nV  direction will b

taken by the weld el
e d ele
provide stiffness in the t

nV  direction, so that there will be n
pivots. 
 
 

Reactions at fixities
are nonzero.

Soft beam element.
t

nV
Mz

Figure 2.3-11: Soft beam element takes applied moment 
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2.3.4  Composite shell elements (Solution 601 only) 
 

• Composite shell elements are generated when a PCOMP 
property ID references one of the following Nastran shell 
connectivity entries: CQUAD4, CTRIA3, CQUAD8, CTRIA6. 
 
• The composite shell elements are kinematically formulated in 
the same way as the single layer shell elements, but 

 
f An arbitrary number of layers can be used to make up the 
total thickness of the shell, and each layer can be assigned a 
different thickness. 

 
f Each layer can be assigned one of the different material 
models available. The element is nonlinear if any of the material 
models is nonlinear, or if the large displacement formulation is 
used. 
 
f Large displacement/large strain kinematics are not supported 
for composite shell elements. 

 
• The conventions for defining the director vectors, the local axes 
V1 and V2, and the 5/6 degree of freedom selection are all the same 
as those for the single layer shell. 
 
• In order to take into account the change of material properties 
from one layer to another, numerical integration of the mass and 
stiffness matrices is performed layer by layer using reduced natural 
oordinates through the thickness of the element (see Fig. 2.3-12 
nd 2.3-13). The relation between the element natural coordinate t 

 

 

c
a
and the reduced natural coordinate tn of layer n is: 

 

( )
1

11 2 1
n

i n n

i
t t

a =

⎡ ⎤⎛ ⎞
= − + − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
.3-1) 

 
 
 
 
 

∑  (2
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with 

 t = element natural coordinate through the thickness 
 tn = layer n natural coordinate through the thickness 
 i  = thickness of layer i 
 a = total element thickness 

 
a and  are functions of r and s. i
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Figure 2.3-12: 8-node composite shell element
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Figure 2.3-13: Multilayered shell  
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The geometry of layer n is given by: 

1 1 2

nN N
tt t k n n kk

i k i k k ni
k k

x h x m t h V
= =

⎡ ⎤
= +

⎣ ⎦
+⎢ ⎥∑ ∑ (2.3-2) 

 with 
 

    

 

  

t
ix  = coordinate of a point inside layer n in direction i 

 N = number of nodes 
h  = interpolation functions 

    
     

    
k

t k
ix  = Cartesian coordinates of node k 

   

   

   urface and midsurface of 
      layer n at node k 

   
In the above formula, is given by 

 

 

    t kV  = component of normal vector t kV  at node k ni n

 ka  = total element thickness at node k 
j
k  = thickness of layer j at node k 
n
km  = distance between element mids

n
km

12 2

nn
n jk k
k k

j

am
=

= − + −∑  (2.3-3) 

 
2.3.5  Numerical integration 

 
• Gauss numerical integration is used in the in-plane directions of 
the shell. For the 4-node shell element, 2×2 integration is used. For 
the 8-node and 9-node elements, 3×3 point integration is used. The 
3-node triangular shell element uses 4-point Gauss integration in 
the in-plane directions, and the 6-node triangular shell element uses 
7-point Gauss integration. 
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lows: 

- For elasto-plastic materials, 5-point Newton-Cotes 
ation 

is computationally more expensive, it gives much more 

ic materials, 3-point 
Newton-Cotes integration is the default. 

e 
t 

 

 

2.3.6  Mass matrices 

 In Solution 601 shell element can be employed with a lumped 
r a consistent mass matrix. Only a lumped mass matrix is allowed 

in Solution 701. 

onsis n the isoparametric 
formulation w lation functions. 

 
pe reedom of 

midsurface nodes is 

• Numerical integration through the shell thickness is as fol
 

- For elastic materials, 2-point Gaussian integration is always 
used. 

integration is the default. Although using 5-point integr

accurate results for elasto-plastic shells. 
- For composite shells with elasto-plast

 
The order of through-thickness integration can be modified via th
TINT parameter in the NXSTRAT entry. If TINT is specified, i
will be applied to both single-layered and composite elasto-plastic
shells. 
 
• The same integration order is used for both Solution 601 and
701. 
 

 
•
o

 
• The c te t mass matrix is calculated using 

ith the shell element interpo

• The lum d mass for translational degrees of f
/M n M is the total elem  where ent mass and 

n is the number of nodes. No special distributory concepts are 
 to d  midside nodes, or to 

account for el
 The rotatio t analysis (Solution 601) 

employed istinguish between corner and
ement distortion. 
nal lumped mass for implici

is ( )2
av

1
12

M ⋅ t
n

shell thickness. The same 

rotational mass m  
nodes, and is  of freedom. 

 rotatio

is 

, where t  is the average av

atrix is assumed for 5- and 6-degree of freedom
applied to all rotational degrees
nal lumped mass for expli i The c t analysis (Solution 701) 

( )2
av

1
12

M t A
n

⋅ + , where  is the average shell thickness and A is 

ref. KJB
Section 6.8.4

avt
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the cross-sect sses are scaled up to 
at t m will not reduce the 
e s

matrix is assum
applied to all rotational degrees of freedom

 cap
 

 Heat transfer capabilities are available for all supported shell 
lements, including composite shells. 

 
ansfer capabilities are formulated by assuming 

rough the shell thickness 
re therefore assigned at each 

rface and one for the bottom 

erically by Gauss 

 
! In the calculation of the top and bottom shell surfaces, the 

 

 

 

ional area. The rotational ma
he rotational degrees of freedoensures th

critical tim tep for shell elements. The same rotational mass 
ed for 5- and 6-degree of freedom nodes and is 

. 
 

2.3.7  Heat transfer abilities 

!

e

! The shell heat trref KJB
Section 5.4.2 that the temperature varies linearly th

 adirection. Two degrees of freedom
ell sushell node, one for the top sh

shell surface. 
 

 The element matrices are integrated num!

integration using the same integration order as the structural 
matrices. 

 

following geometric quantities are used: 

< the coordinates of the nodes that lie on the shell element 
Advanced Nonlinear Solution ⎯ Theory and Modeling Guide 

al to the shell midsurface. 

ll 
 

atically calculated 
by the program, see Fig. 2.3-15. 

midsurface. 

< the director vectors nV  norm

< the shell thicknesses a at the nodal points measured in the 
direction of the vector k

nV  (see Fig. 2.3-14) 
 

! Fig. 2.3-14 shows a 4-node thermal shell element with the she
midsurface nodes, the nodal director vectors and constructed top
and bottom nodes. The director vectors are autom
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k
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All director vectors must
point towards the same
side of the shell element

Shell

midsurface

Thickness at a mid-

�Input midsurface nodes Generated top and bottom nodes

Figure 2.3-14: Description of the thermal shell element

 

! In the calculation of the shell element matrices, i.e., 
conductivity, heat capacity, and heat generation, the top and bottom 
shell surfaces are used instead o

 
 

 

f the midsurface. 
 

 Thermal loads and boundary conditions such as applied 
d 

 

! The shell heat capacity matrix can be calculated based on a 
lumped or a consistent formulation, similar to the mass matrix in 
structural analysis. 
 
!

temperatures, heat flux, convection and radiation can all be applie
to either the top or bottom shell surfaces. 
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Element 1
Element 2

Director vector is
average of all midsurface
normal vectors at the node

Normal vector to midsurface

Normal vector to
midsurface

Thickness

Thickness
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� �Input m Generated top and bottom nodes

k
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2.3.8  Selec
 

e 

e 

mall) 
 element cannot represent zero 

ref. KJB
pp. 403-40

Vk
n Vk

Thickness input refer
to these directions

Figure 2.3-15: Program-calculated director vector at thermal shell

nodes

 
 
tion of elements for analysis of thin and thick shells 

• The most effective element for analysis of general shells is 
usually the 4-node element. This element does not lock and has a 
high predictive capability and hence can be used for effectiv
analysis of thin and thick shells. 
   
• The phenomenon of an element being much too stiff is, in th
literature, referred to as element locking. In essence, the 
phenomenon arises because the interpolation functions used for an 
element are not “abundantly” able to represent zero (or very s
shearing or membrane strains. If the

8
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es very stiff as 
e 

 problem. More details on the 
interpolations used for the transverse and membrane terms are 

 

2.4  Surface elements – 2-D solids (Solution 601 only) 

 
ferences the CPLSTS3, 

 

ID property ID entry that references the 
DX4, CQUADX8, CTRAX3, or 

isymmetric 2-D element which 
 

ents. Contact analysis can 

 

X-Z plane. 

e CQUAD, 
A6, or 
tic plane 

riented in 

f t also 

shearing strains, but the physical situation corresponds to zero (or 
very small) shearing strains, then the element becom
its thickness over length ratio decreases. The MITC elements ar
implemented to overcome the locking

provided in ref. KJB, pp. 403 – 406. 

• 2-D solid elements are obtained in the following cases:  

 PPLANE property ID that ref

CPLSTS4, CPLSTS6 or CPLSTS8 plane stress elements, or the 
CPLSTN3, CPLSTN4, CPLSTN6 or CPLSTN8 plane strain 
elements. This leads to 2D plane strain or plane stress elements
that must be oriented in the X-Z plane.  

 
 PSOLID or PLSOLf

axisymmetric elements CQUA
CTRAX6. This leads to an ax
must be oriented in the X-Z plane. This is the preferred form for
axisymmetric elements since elastic, plastic and hyperelastic 
materials can be used with these elem
also be performed with these elements. 
 
f PLPLANE property ID that references the CPLSTS3, 
CPLSTS4, CPLSTS6 or CPLSTS8 plane stress elements, or the
CPLSTN3, CPLSTN4, CPLSTN6 or CPLSTN8 plane strain 
elements. This leads to hyperelastic 2-D plane strain or plane 
stress which much be oriented in the 
 
f PLPLANE property ID entry that references th
CQUAD4, CQUAD8, CQUADX, CTRIA3, CTRI
CTRIAX shell elements. This leads to a hyperelas
strain or axisymmetric 2-D element which must be o
the X-Y plane. 
 
 
 

PSHELL property ID entry with MID2 = -1 tha
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ref
CT
be 
 
f 

 
2.4.1  General co

 
• 
dimen ss 
and ax ic. Fig. 2.4-1 and Fig. 2.4-2 show some typical 2-
D elements and the assumptions used in the formulations. 

 

 

erences the shell elements CQUAD4, CQUAD8, CTRIA3, or 
RIA6. This leads to a plane strain 2-D element which must 
oriented in the X-Y plane. 

2-D elements are not supported in Solution 701. 

nsiderations 

The following kinematic assumptions are available for two-
sional elements in Solution 601: plane strain, plane stre
isymmetr

�
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(a) 8- & 9-node quadrilateral elements
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(b) 3-node triangular element
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(c) 4-node quadrilateral element

(d) 6- & 7-node triangular elements

�
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�
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Figure 2.4-1: 2-D solid elements  
  
 

 • 2-D solid elements in Solution 601 are classified based on the 
number of nodes in the element and the element shape. Table 2.4-1 
shows the correspondence between the different 2-D solid elements 
and the NX element connectivity entries. 
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a) Plane strain element

��

� � 
 zz = 0

�

�xz = 0

�yz = 0x

y

z

c)Axisymmetric element

��

�

�

�

�xz = 0

�yz = 0


zz = u/x

(linear analysis)

x

y

z

b) Plane stress element

� zx = 0

� zy = 0��

� zz = 0� �

�
xz

Figure 2.4-2: Basic assumptions in 2-D analysis

(assuming element lies in X-Y plane)  
 

 
• Note that the extra middle node in the 7-node and 9-node 2-D 
elements is automatically added by the program when ELCV is set 
to 1 in the NXSTRAT entry. These extra nodes improve the 
performance of the 2-D elements as explained later in this section. 
The boundary conditions at the added node are predicted from the 
neighboring nodes. 

 
• The axisymmetric element must lie in the +X half plane.  
 
 2-D solid elements can be combined with any other elements 

 

rdingly. 
ence, when this element is combined with other elements, or 

ntrated loads are defined, these must also refer to one 
radian, see ref. KJB, Examples 5.9 and 5.10, p. 356. 

s the stiffness, mass and forces 
ccordingly.  

ref. KJB
Sections 5.3.1

 a

y

•
available in Advanced Nonlinear Solution.  

• The axisymmetric element represents one radian of the 
structure, and defines the stiffness, mass and forces acco
H
when conce

nd 5.3.2

 
• The plane strain element provides for the stiffness of a unit 
thickness of the structure, and define
a
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lement connectivity entry 

 
 

2-D solid element  NX e

3-node tr
1 2

 CTRIAX3 (with 3 input nodes) 
iangle 

 CPLSTN3 , CPLSTS3
 CTRIA35, CTRAX36

4-node qua

6-node tr  CTRIA65, CTRAX66

3

7-node tr
 CPLSTN6 , CPLSTS6  

8-node quad
PLSTN81, CPLSTS82 

9-node qua

 CPLSTN81,7, CPLSTS82,7 
5,7 6,7

drilateral 
 CPLSTN41, CPLSTS42 
 CQUAD45, CQUADX46

 CQUAD4, CQUADX3 (with 4 input nodes) 

iangle 
 CPLSTN61, CPLSTS62 

 CTRIAX  (with 6 input nodes) 
1,7 2,7

iangle  CTRIA65,7, CTRAX66,7

 CTRIAX3,7 (with 6 input nodes) 

 C
rilateral  CQUAD85, CQUADX86

 CQUAD4, CQUADX3 (with 8 input nodes) 

drilateral  CQUAD8 , CQUADX8
 CQUAD4,7, CQUADX3,7 (with 8 input nodes) 
 CQUAD4, CQUADX3 (with 9 input nodes) 

 
 
Notes: 

 

Table 2.4-1: ent 
connectivity entries 

 
 

1. Plane strain 
2. Plane stress 
. Axisymmetric hyperelastic only 3

4. Plane strain hyperelastic only 
5. Plane strain hyperelastic 
6. Axisymmetric with no restriction on material 
7. With ELCV = 1 in NXSTRAT entry 
 
Correspondence between 2-D solid elements and NX elem 
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 The plane stress 2-D element has an element thickness that is 
efined either in the CPLSTSi element entry or in the PPLANE or 

ave a varying thickness, that is, 
the thickness can be different at each node. However, the thickness 

e thickness 
of the corresponding corner nodes. 

 

 

 
e 

 

i i
i

•
d
PLPLANE entry. The element can h

at a mid-side node is always taken as the average of th

• The basic 2-D elements used in Solution 601 are isoparametric 
displacement-based elements, and their formulation is described in
detail in ref. KJB, Section 5.3.  

• The basic finite element assumptions for the coordinates ar
(see Fig. 2.4-3): 

q

1
x h x

=

= ∑ ;   i i
i

y h y
=

=
q

1
∑  

 
ents: 

 

u=

and for the displacem

q

1
i i

i=
u h∑ ;   h=

1
i i

i=
v v

q

∑  

 

 
      hi(r,s) = interpolation function corresponding to node i 
    

  
      xi, yi = nodal point coordinates  
    
 

ove are for 2-D solid elements that lie in the X-Y 
lane. A simple change of variable from y to z describes the 2-D 

 

where 

  (r,s) = isoparametric coordinates 
   q = number of element nodes 

  ui, vi  = nodal point displacements 

The equations ab
p
solid elements in the X-Z plane. 
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Figure 2.4-3: C or the 2-D solid element

( lies in X-Y plane)  

 to th sed elements, special mixed-
emen le, in which the displacements 
re int po
hould e le 
stic aterials with Poisson's ratio 
ber- p and elasto-plastic 
mix ly available for plane strain 
ic 2  e d) 

r plane stress 2-D elements.  

umber of pressure degrees of freedom 
sed for each 2-D element type. For more details on the number of 

Section 4.4.3 and

 The mixed interpolation is the default setting for hyperelastic 
aterials. It can be activated for other materials, such as elasto-

 

 

onventions used f

assuming element

 
 
• In addition e displacement-ba
interpolated el ts are also availab
and pressure a
effective and s

er lated separately. These elements are 
 b  preferred in the analysis of incompressib

media and inela materials (elastic m
close to 0.5, rub
materials). The 

like materials, cree
ed formulation is on

and axisymmetr -D lements. It is not available (and not neede
fo
 
• Table 2.4-2 shows the n
u
degrees of freedom ideal for each element, see the ref. KJB, 

 Table 4.6, pp. 292-295. 
 
•
m
plastic, creep, and elastic with high Poisson’s ratio, via the 
UPFORM flag in the NXSTRAT entry. The 4-node element (1
pressure degree of freedom) and 9-node element (3 pressure 
degrees of freedom) are recommended with the mixed formulation.
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2-D solid element 

Number 
of 

pressure 
DOFs 

3-node triangle - 
4-node quadrilateral 1 

6-node triangle 3 
7-node triangle 3 

8-node quadrilateral 3 
9-node quadrilateral 3 

 
Table 2.4-2: Mixed formulation settings for 2-D solid elements 
 
 
 

ref. T. Sussman and K.J. Bathe, "A Finite Element 
Formulation for Nonlinear Incompressible Elastic and 
Inelastic Analysis," J. Computers and Structures, Vol. 
26, No. 1/2, pp. 357-409, 1987. 

 
• In addition to the displacement-based and mixed-interpolated 
elements, Advanced Nonlinear Solution also includes the 
possibility of including incompatible modes (bubble functions)  in 
the formulation of the 4-node 2-D solid element. Within this 
element, additional displacement degrees of freedom are 
introduced. These additional displacement degrees of freedom are 
not associated with nodes; therefore the condition of displacement 
compatibility between adjacent elements is not satisfied in general. 
The addition of the incompatible modes (bubble functions) 
increases the flexibility of the element, especially in bending 
situations. For theoretical considerations, see reference KJB, 
Section 4.4.1. Note that these incompatible-mode elements are 
formulated to pass the patch test. Also note that element distortions 
deteriorate the element performance when incompatible modes are 
used. The incompatible modes setting can be changed using 
ICMODE in the NXSTRAT entry. 
 The incompatible modes feature cannot be used in conjunction 
with the mixed-interpolation formulation. 
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sed 8-node element. It then 
uses the same interpolation functions for each of the 3 corner nodes 

strain conditions (except that the hoop strain in axisymmetric 

• The stresses/strains can be output either at the center and corner 
grid points (PSOLID STRESS=blank or GRID), or at the center 
and corner Gauss points (PSOLID STRESS=1 or GAUSS).  The 

2.4.2  Material models and formulations 
 

• See Tables 2-2 and 2-3 for a list of the material models that are 
compatible with 2-D solid elements. 

tic materials and 
to 0.5. For these 

ated by setting 

 

ls, except for the hyperelastic 

ref. KJB
Section 5.3.

• The interpolation functions used for 2-D solid elements are 
defined in ref. KJB, Fig. 5.4, p. 344. 

• The 6-node spatially isotropic triangle is obtained by correcting 
the interpolation functions of the collap

and for each of the midside nodes. 
The 3-node triangular element is obtained by collapsing one 

side of the 4-node element. This element exhibits the constant 

analysis varies over the element). 
 

option for output at the Gauss points is only available for 
axisymmetric elements.  

 

 
• Advanced Nonlinear Solution automatically uses the mixed 

als. The mixed interpolation formulation for hyperelastic materi
sformulation is also recommended for elastic-pla

ri e also elastic mate als with a Poisson ratio clos
materials, the u/p mixed formulation can be activ
UPFORM = 1 in the NXSTRAT entry. 

• The two-dimensional elements can be used with 
 
 - small displacement/small strain kinematics, 
 
 - large displacement/small strain kinematics, or 
 
 - large displacement/large strain kinematics. 

 
f The small displacement/small strain and large 

displacement/small strain kinematics can be used with any of 
the compatible material mode

2
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material. The use of a linear material with small 
displacement/small strain kinematics corresponds to a linear 
formulation, and the use of a nonlinear material with the 
small displacement/small strain kinematics corresponds to a 
materially-nonlinear-only formulation.  

 
f  The p (total Lag mulation 

when ent/sma ion is 
select

 
f  ain kine tics can be used 

with pla cluding those w thermal and creep 
eff c materials. The ULH (updated 
La tion or UL pdated 
Lagrangi ormulation can be used for all 
com except the h erelastic material. 
For , the TL (to  Lagrangian) 
formula  ULFORM para ter in the 
N he ULH/U  setting. 

 

 
 

alysis. 
 

2.4.3  Num
 

ent uses 2×2 Gauss integration for 

 

e 
int 

ntegration in the axisymmetric case. The 6-node and 7-node 
). 

ref. KJB
Sections 5.5.3,

5.5.4 and 5.5.5 

ref. KJB
Sections 6.2 an

rogram uses the TL 
the large displacem

rangian) for
ll strain formulat

ed. 

The large displacement/large str ma
stic materials in ith 

ects, as well as hyperelasti
grangian Hencky) formula J (u

an Jaumann) f
patible material models 

 the hyperelastic material
yp
tal

tion is used. The me
XSTRAT entry determines t LJ

• The basic continuum mechanics formulations of 2-D solid 
lements are described in ref. KJB, pp. 497-537, and the finite ed

6.3.4

ref. KJB
Section 6.8.1

element discretization is given in ref. KJB pp. 538-542, 549-555.

• Note that all these formulations can be mixed in the same finite 
element model. If the elements are initially compatible, then they 

ill remain compatible throughout the anw

erical integration 

 The 4-node quadrilateral elem•
the calculation of element matrices. The 8-node and 9-node 
elements use 3×3 Gauss integration. See Fig 2.4-4(a). 
 
• The 3-node, 6-node and 7-node triangular elements are spatially
isotropic with respect to integration point locations and 
interpolation functions (see Section 5.3.2, ref. KJB). The 3-nod
element uses a single point integration in plane strain and 4-po
Gauss i
triangular elements use 7-point Gauss integration. See Fig 2.4-4(b
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r r
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s

a) Rectangular elements

1-point

s

r

4-point

b) Triangular elements

7-point

Figure 2.4-4: Integration 2-D solid  
 
• Note that in onlinear analys
positions o nts change tinuously as 
the elemen  but throug  the response 
the same material particles are at the integration points. 
 

2.4.4  Mass matrices 
 

• The con ays calculated using either 
3×3 Gauss integration for rectangular elements or 7-point Gauss 

• The trix of an element is formed by dividing 
the element’s mass M equally among its n nodes. Hence, the mass 
ssigned to each node is

point positions for elements

geometrically n is, the spatial 
f the Gauss integration poi
t undergoes deformations,

 con
hout

sistent mass matrix is alw

integration for triangular elements. 
 

lumped mass ma

 /M n . No special distributory concepts a
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 or 

2.4.5  Heat transfer capabilities 
 

 

ne stress element 
entries. There is no difference between plane strain and plane stress 

One temperature degree of freedom is present at each node. 
 

! The axisymmetric elements must be defined using the 

! The element matrices are integrated numerically by Gauss 
integration using the same integration order as the structural 

 

ent. 

circumferential direction. 

 The heat capacity matrix can be calculated based on a lumped or 

med by 
ividing the element’s total heat capacity C equally among its n 

. No special 
istributory concepts are employed to distinguish between corner 

and n.  
 
 
 
 
 

are employed to distinguish between corner and midside nodes,
to account for element distortion.  
 

! Heat transfer capabilities are available for all 2-D solid 
elements. 

! The planar 2-D solid heat transfer elements may be defined 
using any of the 2-D solid plane strain or pla

for heat transfer analysis, except for the element thicknes, see 
below. 
 
! 

CQUADXi or CTRAXi entries, and they cover one radian of the 
physical domain. 

 

matrices. 

! The planar 2-D heat transfer element assumes the same 
thickness as the underlying plane stress or plane strain elem
The axisymmetric element always extends one radian in the 

 
!

consistent heat capacity assumption. 
 
! The lumped heat capacity matrix of an element is for
d
nodes. Hence, the mass assigned to each node is /C n
d

 midside nodes, or to account for element distortio
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2.4.6  Recommen
 

• Th ctive. 
 

•  
only b
the 4-node element is used in problems where bending effects are 
sig
 
• Fo tic 
materi
axisym  
eleme
 

2.5  Solid eleme

2.5.1  Gene
 

e CHEXA, CPENTA , 
TETRA and CPYRAM element connectivity entries. They 
n

r all of the supported 
perelastic which uses PLSOLID. 

• 
e 

edron, 
node brick elements). 

dations on use of elements 

e 9-node element is usually the most effe

The linear interpolation elements (3-node and 4-node) should
e used in analyses when bending effects are not dominant. If 

nificant, incompatible modes should be activated. 

r nearly incompressible elastic materials, elasto-plas
als and creep materials, and when using plane strain or 
metric elements, the use of the u/p mixed formulation

nts is recommended. 

nts – 3-D 

ral considerations 

 3-D solid elements are generated using th•
C
ge erate 6-, 5- and 4-sided 3-D elements. Typical 3-D solid 
elements are shown in Fig 2.5-1. 
 
• The PSOLID property ID entry is used fo
materials, except hy
 
• 3-D solid elements in Advanced Nonlinear Solution are 
classified based on the number of nodes in the element, and the 
element shape.  
 

Table 2.5-1 shows the correspondence between the different 3-
D solid elements and the NX element connectivity entries. Not
that the elements are frequently referred to just by their number of 
nodes. 
 
• Solution 701 only supports linear elements (4-node tetrah
6-node wedge and 8-
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(a) 8-, 20- and 27-node brick elements (CHEXA)

(b) 4-, 10- and 11-node tetrahedral elements (CTETRA)
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(c) 6-, 15-, and 21-node wedge elements (CPENTA)
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(d) 5-, 13-, and 14-pyramid elements (CPYRAM)

Figure 2.5-1: 3-D solid elements
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3-D solid element NX element connectivity entry 

4-node tetrahedron  CTETRA 
10-
11- TRA and ELCV = 1 in NXSTRAT 

1
2

rick  CHEXA 
2
2 AT 
5

13
14 RAM and ELCV = 1 in NXSTRAT 

node tetrahedron1  CTETRA 
node tetrahedron1  CTE
6-node wedge  CPENTA 
5-node wedge1  CPENTA 
1-node wedge1  CPENTA and ELCV = 1 in NXSTRAT 
8-node b
0-node brick1  CHEXA 
7-node brick1  CHEXA and ELCV = 1 in NXSTR
-node pyramid  CPYRAM 
-node pyramid1  CPYRAM 
-node pyramid1  CPY
 
Note: 
1.  Only for Solution 601 
 
able 2.5-1: Correspondence between 3-D solid elements and NX 

element connectivity entries 
 

T

lements. 

id 
elements are output in the element coordinate system. ELRESCS = 

stress/strain results in the material coordinate system. The option is 

 
 
• Advanced Nonlinear Solution supports incomplete quadratic 3-
D elements for tetrahedral and pyramid elements. Incomplete 
quadratic elements are not supported for brick and wedge e
For example, a CHEXA entry can only have 8 nodes or 20 nodes. 
Anything in between is not supported. Also, a CTETRA can have 
any of its midside nodes removed. 
 
• For nonlinear analysis, stress/strain results for 3-D sol

1 in NXSTRAT may be used to request output of nonlinear 

useful for post-processors that do not perform any transformation 
of the stress/strain coordinate system when importing the op2 file. 
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olume and midsurface nodes in the 27-node, 
1-node, 14-node and 11-node elements are automatically added by 

Advanced Nonlinear Solution when ELCV is set to 1 in the 
NX  at the added nodes are 
predicted from the neighboring nodes. 

 
• d Nonlinear Solution are 

oparametric displacement-based elements, and their formulation 
is d

 
 The basic finite element assumptions for the coordinates are 

 

1
i i i

i i i

• Note that the mid-v
2

STRAT entry. The boundary conditions

The elements used in Advance
is

escribed in ref. KJB, Section 5.3. 

•
(see Fig. 2.5-2, for the brick element): 

q q q

i i i
1 1

x h x y h y z h z
= =

= = =
=

∑ ∑ ∑  

  
n  for the displacements: 

 

 

i 
inates 

      q
    
    

 

ible 
als in which 

Poisson's ratio is close to 0.5, for rubber-like materials and for 
elasto-plastic materials). Table 2.5-2 shows the number of pressure 
degrees of freedom for each 3-D element type. For more details on 
the mixed interpolation of pressure and displacement degrees of 
freedom for 3-D solids, see Section 4.4.3, p. 276, and Tables 4.6 
and 4.7, pp. 292 - 295 in ref. KJB.  

ref. KJB
Section 5.

a d

1 1 1
v v

q q q

i i i i i i
i i i

u h u h w h w
= = =

= = =∑ ∑ ∑  

where 
      hi (r, s, t) = interpolation function corresponding to node 

      r, s, t = isoparametric coord
 = number of element nodes 

  xi, yi, zi = nodal point coordinates 
  ui, vi, wi = nodal point displacements  

 
• In addition to the displacement-based elements, special mixed-
interpolated elements are also available, in which the displacements
and pressure are interpolated separately. These elements are 
effective and should be preferred in the analysis of incompress
media and inelastic materials (specifically for materi

3
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Figure 2.5-2: Conventions used for the nodal coordinates and

displacements of the 3-D solid element  
 
 
 
 
 
 

Number of 3-D solid element pressure DOFs 
4-node tetrahedron - 

10-node, 11-node  tetrahedron 4 

5-node pyramid 1 
13-node, 14-node pyramid 1 

6-node wedge 1 
15-node, 21-node wedge 4 

8-node brick 1 
20-node, 27-node brick 4 

 
Table 2.5-2: Mixed u/p formulations available for 3-D solid elements 
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• The mixed formulation is the default setting for hyperelastic 
materials, and it can be activated for other materials, such as 
elastic-plastic, creep, and elastic with high Poisson’s ratio, via the 
UPFORM flag in the NXSTRAT entry.  
 
• The use of the 8-node (one pressure DOF) or 27-node (4 
pressure DOFs) element is recommended with the mixed 
formulation.  
 
• Note that 4 pressure degrees of freedom are used for the 10-
node tetrahedron, the 15-node wedge and the 20-node brick 
element. Even though this setting does not satisfy the inf-sup test, 
the elements generally perform better than with a single pressure 
egree of freedom. Still, it is better to add the midside nodes if

 

ee 

element distortions deteriorate the element performance when 
incompatible modes are used. 
 The incompatible modes feature cannot be used in conjunction 
with the mixed-interpolation formulation 

 
• Table 2.5-3 shows which elements support incompatible modes 
(bubble functions). The incompatible modes feature is only 
available for the 5-node pyramid, 6- node wedge and the 8-node 
brick elements.  

 

d  
possible. This is done by setting ELCV = 1 in the NXSTRAT 
entry. 
  
• In addition to the displacement-based and mixed-interpolated 
elements, Advanced Nonlinear Solution also includes the 
possibility of including incompatible modes (bubble functions)  in 
the formulation of the 5-node pyramid, 6-node wedge and the 8-
node brick element. Within this element, additional displacement 
degrees of freedom are introduced. These additional displacement 
degrees of freedom are not associated with nodes; therefore the 
condition of displacement compatibility between adjacent elements
is not satisfied in general. The addition of the incompatible modes 
(bubble functions) increases the flexibility of the element, 
especially in bending situations. For theoretical considerations, s
reference KJB, Section 4.4.1. Note that these incompatible-mode 
elements are formulated to pass the patch test. Also note that 
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3-D solid element 
Support for 

incompatible 
modes 

4-node tetrahedron No 
5- to 11-node  tetrahedron No 

6-node wedge Yes 
15-node, 21-node wedge No 

8-node brick Yes 
20-node, 27-node brick No 

5-node pyramid Yes 
6- to 14-node pyrami No d 

 
atible modes (bubble functions) available for 3-D 
lements 

 
 

 
ifferent local node numbering convention). 

 

d sides of rectangular elements. Spatially 
otropic 10-node and 11-node tetrahedra are used in Solution 601.  

 
e 8-node rectangular element. This 

lement exhibits constant strain conditions. 
 

ses/strains can be output either at the center and corner 
rid points (PSOLID STRESS=blank or GRID), or at the center 

2.5.2  Mate
 

rial models that are 
ompatible with 3-D solid elements. 

 
 

Table 2.5-3: Incomp
solid e

 
• The interpolation functions used for 3-D solid elements for 
q ≤ 20 are shown in Fig. 5.5, ref. KJB, p. 345 (note that ref KJB
uses a d

• The 10-node tetrahedron (see Fig. 2.5-1(c)) is obtained by 
collapsing nodes an
is

The 4-node tetrahedron (see Fig. 2.5-1(c)) is obtained by
collapsing nodes and sides of th
e

• The stres
g
and corner Gauss points (PSOLID STRESS=1 or GAUSS).  
 
rial models and nonlinear formulations 

• See Tables 2-2 and 2-3 for a list of the mate
c
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anced Nonlinear Solution automatically uses the mixed 

terpolation formulation for hyperelastic materials. The mixed 
and 

. It can be 
tivated by setting UPFORM = 1 in the NXSTRAT entry. 

 

ematics can be used with any of 
the compatible material models, except for the hyperelastic 
material. The use of a linear material with small 
displacement/small strain kinematics corresponds to a linear 
formulation, and the use of a nonlinear material with the 
small displacement/small strain kinematics corresponds to a 
materially-nonlinear-only formulation. 

  
f The program uses the TL (total Lagrangian) formulation 

when large displacement/small strain kinematics is selected. 
 
f The large displacement/large strain kinematics can be used 

with plastic materials including thermal and creep effects, as 
well as hyperelastic materials. The ULH (updated 
Lagrangian Hencky) formulation or the ULJ (updated 
Lagrangian Jaumann) formulation can be used for all 
compatible material models except the hyperelastic material. 
For the hyperelastic material models, a TL (total Lagrangian) 
formulation is used. The ULFORM parameter in the 
NXSTRAT entry determines the ULH/ULJ setting. 

 
 The basic continuum mechanics formulations are described in ref. KJB

Sections 6.

• Adv
in
formulation is also recommended for elastic-plastic materials 
elastic materials with a Poisson ratio close to 0.5
ac

• The 3-D elements can be used with  
 
 - small displacement/small strain kinematics, 
  
 - large displacement/small strain kinematics, or 
 
 - large displacement/large strain kinematics. 
 
f The small displacement/small strain and large 

displacement/small strain kin

•
ref. KJB, pp. 497-568. The finite element discretization is 
summarized in Table 6.6, p. 555, ref. KJB. 
 

2
 and 6.3.5
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l 
. 

 
2.5.3  Num

 
 the 

lements 

 
 Tetrahedral elements are spatially isotropic with respect to 
tegration point locations and interpolation functions. For the 4-

ode tetrahedral element, 1-point Gauss integration is used. For the 
0-node tetrahedral element, 17-point Gauss integration is used, 

al 
os

 

ion order is used for both Solution 601 and 
01

2.5.4  Mas
 

 

 
• Note that all these formulations can be used in the same finite 
element model. If the elements are initially compatible, they wil
remain compatible throughout the analysis

erical integration 

• The 8-node brick element uses 2×2×2 Gauss integration for
calculation of element matrices. The 20-node and 27-node e
use 3×3×3 Gauss integration. 

•
in
n
1
and 17-point Gauss integration is also used for the 11-node 
tetrahedral element. 
 
• Note that in geometrically nonlinear analysis, the spati
p itions of the Gauss integration points change continuously as 
the element undergoes deformations, but throughout the response
the same material particles are at the integration points. 
 
• The same integrat
7 . 

 
s matrices 

• The consistent mass matrix is always calculated using 3×3×3 
Gauss integration except for the tetrahedral 4-node, 10-node and 
11-node elements which use a 17-point Gauss integration. 
 
• The lumped mass matrix of an element is formed by dividing 
the element’s mass M equally among each of its n nodal points. 
Hence the mass assigned to each node is /M n . No special 
distributory concepts are employed to distinguish between corner 
nd midside nodes, or to account foa r element distortion. 

ref. KJB
Section 6.8.1

ref. KJB
Sections 5.5.3,

 5.5.4 and 5.5.

 
• The same lumped matrix is used for both Solution 601 and 
Solution 701. 
 

5
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2.5.5  Heat transfer capabilities 
 

! Heat transfer capabilities are available for all 3-D solid 
lements. 

 

tegration using the same integration order as the structural 

an be calculated based on a lumped or 
onsistent heat capacity assumption. 

 The lumped heat capacity matrix of an element is formed by 
ding the element’s total heat capacity C equally among each of 

s n nodal points. Hence the mass assigned to each node is 
guish 

etween corner and midside nodes, or to account for element 
. 

2.5.6  Reco
 

lation elements (4- to 8-node) usually perform 
etter in contact problems.  

 
 The linear interpolation elements (5-node, 6-node and 8-node 

ffects are not dominant. If bending 
ffects are insignificant, it is usually best to not use incompatible 

n element, many 
lements (fine meshes) must usually be used in analyses. 

e elastic materials, elasto-plastic 
materials and creep materials, the use of the u/p mixed formulation 

odeled has a dimension which is 
xtremely small compared with the others, e.g., thin plates and 

e
 
! One temperature degree of freedom is present at each node. 

! The element matrices are integrated numerically by Gauss 
in
matrices. 
 
! The heat capacity matrix c
c
 
!

divi
/C n . it

No special distributory concepts are employed to distin
b
distortion
 
mmendations on use of elements 

• The linear interpo
b

•
brick elements, without incompatible modes) should only be used 
in analyses when bending e
e
modes. 
 
• Since the 4-node tetrahedron is a constant strai
e
 
• For nearly incompressibl

elements is recommended. 
 
• When the structure to be m
e
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 use of the 3-D solid element usually results in too stiff a 

s, particularly the 4-node shell element (see 
ection 2.3), is more effective. 

 
ecommendations specific to Solution 601 

 
 The 27-node element is the most accurate among all available 

e costly. 

ially if 

2.6  Scalar

2.6.1  CEL
 

r Solution either connect 
 deg f freedom r or just a egree of fr  to 

the ground. There are three forms of scalar elements: spri
masses, and dampers. 

ring elements are defined using the CELAS1 and 

ASS2 
el connectivit es. 

 
per element defined using  CDAMP1 an

 single degree of 
ee  

ively. 

ref. KJB
Page 38

shells, the
model and a poor conditioning of the stiffness matrix. In this case, 
the use of shell element
S

R

•
elements. However, the use of this element can b

 
• The 20-node element is usually the most effective, espec
the element is rectangular (undistorted).  

 elements – Springs, masses and dampers 

AS1, CELAS2, CMASS1, CMASS2, CDAMP1, CDAMP2 

 Scalar elements in Advanced Nonlinea•
2 rees o togethe single d eedom

ng  s,

 
f Sp
CELAS2 element connectivity entries. 
 
f Mass elements are defined using the CMASS1 and CM

ement y entri

f 

CDA
Dam s are  the d 

MP2 element connectivity entries. 
 
• Fig. 2.6-1 shows the spring, mass and damper
fr dom elements available in Advanced Nonlinear Solution. They
correspond to a grounded spring, a concentrated mass, and a 
grounded damper, respect
 

3
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� �

�

�

k u

Sin

translational

gle

DOF spring

� ü

m
k

Single

rotational
Single Single

translational rotational

DOF mass

Mass = [m]M

DOF spring DOF mass

c c

Single

translational

Single

rotational

Stiffness = [k]K

degree of freedom scalar elements  

 
6-2 shows the available scalar elements connecting two 

degrees of freedom. Only the translational version of the spring and 

2.6.2  6-DOF spring element (Solution 601 only) 
 

• The 6-DOF spring element is a generalized spring-damper 
element which can be linear or materially-nonlinear only (MNO). 
This element is defined using the CBUSH element connectivity 
entries. It can have single node, two coincident or two non-
coincident nodes. In each degree of freedom, the element stiffness 
can be defined as a constant or using a force-displacement curve in 
the element coordinate system. The damping coefficients are 
always constants in units of force per unit velocity. 

.
u

(b) mass element(a) spring element

DOF damper DOF damper

Damping = [c]C

(c) damper element

Figure 2.6-1: Single

 

• Fig. 2.

damper are shown in the figure, but they can connect rotational 
degrees of freedom as well. 
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K =

C =

k

c

c

-k

-c

-c

-k k

a) spring element

b) damper element

1 2

U 1 U2

1 2

U1 U2

k

c

M =lumped

m/2 0

0 m/2

ass element

m

M =consistent

m/3

m/3

m/6

m/6

U1 U2

c) m

Figure 2.6-2: Two-degrees-of-freedom scalar elements 

• A displacement (skew) system can 
 

be used in the 6-DOF spring 
lement to prescribe loads and constraints. Element birth/death is 

also supported. Currently, the 6-DOF spring element is not 
supported in explicit dynamics analysis.  

 
• If a 6-DOF spring element has single node or two coincident 
nodes, its element coordinate system must be defined using a CID 
as shown in Fig. 2.6-3 and Fig. 2.6-4. A single node 6-DOF spring 
element corresponds to a grounded spring acting in the user-
specified degree of freedom.  
 

e
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x-element

x

y

CID
z

y-element
z-element

GA

Figure 2.6-3: 6-DOF spring element with single node 
 

CID

x-element

z-element

x

y
z

y-element

spring element with two coincident nodes

GA, GB

Figure 2.6-4: 6-DOF  

• If a 6-DOF spring element has two non-coincident nodes, its 
element coordinate system can be defined using a CID, an 
orientation vector or its axial direction as shown in Figs. 2.6-5 to 
2.6-7.  
 In Fig. 2.6-5, the element coordinate system is defined by a 
CID. Note that GA and GB might or might not have displacement 
(skew) coordinate systems.  
 `In Fig. 2.6-6, the element coordinate system is defined by an 
orientation vector using GO or X1, X2, X3. Note that X1, X2, X3 
refers to the displacement (skew) coordinate system of GA.  
 In Fig. 2.6-7, a 6-DOF spring element is defined with two non-
coincident nodes without GO, X1, X2, X3 or CID. This defines a 1-
D axial/torsional spring/damper. In this case, axial stiffness (or 
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g) or both must be 
g) must not be specified.  

 

GA

Figure 2.6-5: element with two non-coincident

damping) or torsional stiffness (or dampin
specified but all other stiffness (or dampin

 

CID

y
z

x-element

x

y-element

z-element

GB

6-DOF spring nodes 
 
 
 
 

x-element

y-element
(in plane)

z-element
mal to GO or (X1,X2,X3)

, GB, GO

re 2 non-coincide odes

(nor plane)

Plane of GA

GA

GB

Figu .6-6: 6-DOF spring element with two nt n  
 
 
 
 

x-elementGA

GB

Figure 2.6-7: 1-D spring element with two non-coincident nodes 
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2.7  R-type elements 

R-type elements impose multipoint constraints on one or more 
 

 on lements are 
ted d Nonlinear Solution: RBAR, RBE2 and 

. 
 

ents that include 
 an

E3 t which also 
es 

nt
 

luti odeling the Rigid 
ts. elements using 

rain ements. The 
AR TRAT entry 
ine

 
• Solution 701 does not support the flexible option. 

he R ent between two 
nodes. 
 
• The R enerates multiple Rigid elements. They 

ect o des. 

• If the perfectly ents are 
internally andard multipoint constraints, or 

id li  constraint 
equations). Multipoint constraints have constant constraint 
coefficients and therefore do not give accurate results in large 

nts 

create multipoint constraints but with variable coefficients that are 
updated based on the deformation of the structure. This is 

• 
nodes. The constraints are created autom
based
suppor

atically by the program
the element’s input. The following R-type e
 in Advance

RBE3

• Rigid elem
RBAR
 

ents are a subset of R-type elem
d RBE2. 

• RB
produc

 is an interpolation constraint elemen
constraint equations. 

 
 

2.7.1  Rigid eleme s 

• So
elemen

on 601 provides several options for m
 They can be modeled as perfectly rigid 

const
EQRB
determ

t equations or as flexible (but stiff) el
 or EQRBE2 parameters in the NXS
 how the Rigid elements are treated. 

 
• T BAR entry generates a single Rigid elem

BE2 entry g
conn
  

ne independent node to several no

 rigid option is selected, Rigid elem
 represented either as st

as rig nks (see Section 5.8 for enforcement of

displacements (unless the 2 nodes are coincident or the constrai
do not involve rotational degrees of freedom). Rigid links also 
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illustrated in Fig. 2.7-1. Therefore, whenever possible, large-
emdisplac

 
ent rigid links are used.  

�

using MPC — small rotations

3 RBAR e

depe

�

�

lements with

one in ndent node

�

��

� ��

�

�

��

�

�

�
�

�

�

�

�

�rotation

using lar

rig

ge displacement

id links

Figure ment MPC d

 
 
• Rigid ed as multipo
constrain onstraint setting (GEN PC 
parameter in NXSTRAT). If constraints are set to general 
constraints (GENMPC=1), the constraint is enforced using 
Lagrange multipliers. Rigid elements represented by rigid links 
(which have variable constraint coefficients) are not influenced by 
the general constraint flag. They are always enforced using the 

01 internally generates beam or spring elements depending on the 
eters and the distance between the nodes 

 

2.7-1: Difference between small displace

large displacement rigid links

an

elements that are internally represent int 
ts are affected by the general c M

default master-slave constraint approach. 
 
• If the flexible option is selected for Rigid elements, Solution 
6
Rigid element param
(RBLCRIT parameter in NXSTRAT), or a spring element 
translation can be always requested (in the EQRBAR parameter in 
NXSTRAT). 
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• The stiffness of the internal springs and the Young’s modulus 
e internal beams can be automatically 
r set by the user (see SPRINGK, 

 
 flexible option can lead to easier convergence in 

 
ned 

e of freedom of a constraint (standard, not 
in another constraint 
m. Hence, chaining 

 

bove). 

s 
in 

and cross-sectional area of th
determined by Solution 601 o
BEAME and BEAMA parameters in NXSTRAT entry). 
 
• The rigid option results in more accurate enforcement of the 
constraint. However, the compliance introduced in the model when
using the
nonlinear problems. 
 
• The flexible option results in none of the degrees of freedom
becoming dependent. This allows multiple constraints to be defi
at a node, and it is sometimes beneficial for contact. 
 
• A dependent degre
general constraint) or rigid link cannot be used 
or rigid link as an independent degree of freedo
of constraints is not allowed. Chaining of rigid links is enabled by
internally replacing the dependent node of each rigid link by the 
first node in the chain (to avoid the restriction mentioned a
 
Classification of Rigid elements 
 
• The internal representation of an RBAR rigid element depend
on the options present in CNA, CNB, CMA and CMB, as shown 

ig. 2.7-2. F
 
 

GB

Independent: CNA

Dependent: CMA

�

�

GA
t: CNB

CMB

 with Class 1. 

Independen

Dependent:

Figure 2.7-2: Relevant parameters in the RBAR rigid element 
 
 
• Currently, Advanced Nonlinear Solution identifies 5 classes of 
RBAR settings. Each class gets a different internal representation. 

hecking for each class is done in sequence startingC
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Cla

ll 6 degrees of freedom of one point are dependent on those of the 
oth
 

NA = 123456, CNB = 0, CMA = 0, CMB = 123456 
 
or  
 
CNA = 0, CNB = 123456, CMA = 123456, CMB = 0 

Class 2: 
f 

pendent (missing terms in CMA 
or CMB) involve degrees of freedom that do not exist at the slave 

 
CN
 
wh
fre o not exist). 
 
Anoth
 
CNA = 0, CNB = 123456, CMA = 12, CMB = 0 
 
where node A
freedom 3456 do

 
Note that this on ies to non-existent degrees of freedom (not 
fixed ones). If an excluded DOF is fixed then the rigid element 
do
 
Class 3: 
One p t all 6 of 
them). In other words, 
 
CNA 
 
or 
 

ss 1:  
A

er point. In other words,  

C

 

One point has all the dependent degrees of freedom (but not all 6 o
them), and all those that are not de

node. For example, 

A = 123456, CNB = 0, CMA = 0, CMB = 123 

ere node B is attached only to 3D solid elements (so degrees of 
edom 456 d

er example, 

 is attached only to 2D solid elements (so degrees of 
 not exist) 

ly appl

es not belong to this Class. 

oint has all the dependent degrees of freedom (but no

= 123456, CNB = 0, CMA = 0, CMB = Q 
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3456, CMA = Q, CMB = 0 
 

 node, then the rigid element belongs to Class 2. 

Class 
All 6 d ut not all dependent degrees of 
freedom belong to 1 point. For example,  

CNA CNB CMA CMB 

CNA = 0, CNB = 12

where Q is any combination of the 6 DOFs except “0” and 
“123456” (“0” is not allowed, and “123456” belongs to Class 1). 
Note that if the degrees of freedom not included in Q are all non-
existent at the
 

4:  
egrees of freedom active b

 

1 0 23 456 0 
12346 5 5 12346 

 
Class 5: 
Not al t and 
rigid e
 

CNA CNB CMA CMB 

l the 6 degrees of freedom are active in the constrain
lement fails criteria for Classes 2 and 3. For example,  

123 456 4 3 
  

are 

 The internal representation of Rigid elements for each class is 
described in Table 2.7-1. 
 
 

 Rigid option  Flexible option 

 Note that there are some other valid settings for RBAR that 
not supported in Advanced Nonlinear Solution. 
 
•

 L < Lcrit L > Lcrit L < Lcrit L > Lcrit

Class 1 MPC Rigid link1 Springs Beam1

Class 2 MPC Rigid link1 Springs Beam1

Class 3 MPC Rigid link1 Springs Springs 
Class 4 MPC MPC Springs Beam1

Class 5 MPC MPC Springs Springs 
 

1This constraint is accurate in large displacement analysis 
 

Table 2.7-1: Internal representation of Rigid elements 
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• in the same manner as RBAR except that it 
produces multiple Rigid elements. These elements can only belong 
to Class 1 or 3, and their internal representation is dictated by the 
EQ TRAT. 
 
 

2.7.2  RBE3 e
 
• The RBE3 R-type element defines the motion of a reference 
node as a weighted average of the motion of a set of other nodes. 
This element is a useful tool for distributing applied load and mass 
in a model. It is internally represented in Advanced Nonlinear 
Solution with multipoint constraints. 

2.8  Other element types 

2.8.1  Gap
 

RBE2 is interpreted 

RBE2 parameter in NXS

lement 

 element 

• The gap element is used in Advanced Nonlinear Solution to 
connect two nodes as shown in Fig. 2.8-1. Gap elements are 
defined using the CGAP element connectivity entry. 
 

t

r

K - KA B

s

U0

GA

KB

GB

Figure 2.8-1: CGAP element coordinate system  
 
 The initial gap opening is U•

elem
0. When the gap is closed the 

ent has a stiffness of KA (should be stiff), and when it is open 
the ld be soft). 
 

 stiffness is KB (shou
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• he tangential behavior of the gap element represented by KT, 
MUI and MUZ is not supported. 
 

2.8.2  Concentrated mass element 
 

• on supports the ONM1 and 
CONM2 entries for defining concentrated masses.  
• or CONM1, only the diagonal mass terms are supported, and 
the trix is given by: 
 

55

66

0 0 0 0 0

0 0 0 0 0
0

M

M
M

T

Advanced Nonlinear Soluti C

F
 resulting mass ma

11

22

⎡ ⎤
0 0 0 0 0M

33

44

0 0 0 0 0
0 0 0 0 0

0 0 0 0

M
M

⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

s 
 

 

0

0 0 0 0 0

M

 
• For CONM2, the off-diagonal mass moments of inertia term
are neglected, and the resulting mass matrix is

11

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

M
I

I22

33

0 0 0 0 0
0 0 0 0
M

M

I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥

M  

⎢ ⎥
⎢ ⎥⎣ ⎦

 
2.8.3  Bushing element 

 
ss and 

 
• The one-dimensional bushing element CBUSH1D is used in

dvanced Nonlinear Solution to provide an axial stiffneA
damping between two nodes as shown in Fig. 2.8-2. 
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GA GB

Figure 2.8-2: BUSH1D element  
 

 
 The stiffness and damping act along the axis of the element, 

acement 
 

 
 
 

 
 

•
which is the line connecting its two nodes. In large displ
analysis the element axis is updated with deformation. A fixed
element axis can be specified via the CID parameter in the 
CBUSH1D entry. 
 
• The element can have a constant or a nonlinear stiffness defined 
via a lookup table. 
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3. Material models and formulations 
 

The objective sis and practical 
use of the ma odels and formulations available in Advanced Nonlinear 
Solution. 

The stres
are first summ

The table dvanced Nonlinear 
Solution, and how they can be obtained from the material entry cards. Note that 
Tables 2-2 and 2-3 list the acceptable combination
properties for Solutions 601 and 701. 

 
 
 
 

Material Entr anced Nonlinear Solution material Sol 701 
availability1

 of this chapter is to summarize the theoretical ba
terial m

s and strain measures used by different materials and formulations 
arized in Section 3.1. 

 below lists the material models available in A

s of elements and material 

ies Adv

MAT1 Elastic isotropic 9 

MAT1, CRE

MAT1, CRE
MATTC 

al elastic-creep  

MAT1, MA

MAT1, MATS1 3 9 

MAT1, MA Elasto-plastic 

MAT1, MATS16 9 

MAT1, MATS1, 
MATT16

Thermal elasto-plastic, temperature- 9 

MAT1, MA

MAT1, MA
MATT15

EP Elastic-creep  

EP, Therm

TG Gasket  
2 Elastic isotropic nonlinear

TS14 9 

Thermal elasto-plastic 

dependent elastic properties 

TS15 Thermal elasto-plastic, temperature-
dependent plastic properties 

9 

TS1, Thermal elasto-plastic, temperature-
dependent elastic and plastic properties 

9 

Table 3

 

.1: Material models available in Advanced Nonlinear Solution 
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Material Entries Advanced Nonlinear Solution material Sol 701 
availability1

MAT1, MA
CREEP6

TS1, Plastic-creep  

MAT1, MATS1, 
CREEP, MA

Plastic-creep with temperature-dependent  

MAT1, MA
CREEP5

MAT1, MA
MATT1, CREEP

Th creep, temperature-
dependent elastic and plastic properties 

 

MAT1, MA
CREEP, MA T

Thermal plastic-creep, tem

MAT1, MA
MATT1, CR
MATTC6

MAT1, MA
CREEP, MA

per

MAT1, MA
MATT1, CR E
MATTC5

Thermal plastic-creep, temperature-  

MAT2 9 

MAT2, MATT2 Thermal elastic orthotropic (surface 9 

MAT3 

MATT3, MA Thermal elastic orthotropic (2D 
axisymmetric elements) 

MAT4 

MAT4, MA pic heat 
transfer 

 

TT16 properties 

TS1, Thermal plastic-creep, temperature-
dependent plastic properties 

 

TS1, 
5

ermal plastic-

TS1, perature-  
T C6 dependent creep properties 

TS1, 
EEP, 

Thermal plastic-creep, temperature-
dependent elastic and creep properties 

 

TS1, 
TTC5

Thermal plastic-creep, tem ature-
dependent plastic and creep properties 

 

TS1, 
E P, dependent elastic, plastic and creep 

properties 

Elastic orthotropic (surface elements) 

elements) 

Elastic orthotropic (2D axisymmetric 
elements) 

 

T3  

Isotropic heat transfer  

TT4 Temperature dependent isotro

Table 3.1: Material models available in Advanced Nonlinear Solution 

 
(continued) 
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Material En

bility1
tries Advanced Nonlinear Solution material Sol 701 

availa

MAT5 Orthotropic heat transfer  

MAT5, MATT5 Temperature dependent orthotropic heat  

MAT8 ce ements) 

MAT8, MA ic (surface 9 

MAT9 d elements) 9 

MAT9, MATT9 Thermal elastic orthotropic (solid 9 

MAT11 

MAT11, MATT11 9 

MATHE 

Hyper

MATHP 

MATSMA 

MATVE 

transfer 

Elastic orthotropic (surfa  el 9 

TT8 Thermal elastic orthotrop
elements) 

Elastic orthotropic (soli

elements) 

Elastic orthotropic (solid elements) 9 

Thermal elastic orthotropic (solid 
elements) 

Hyperelastic (Mooney-Rivlin, Ogden, 
Arruda-Boyce, Sussman-Bathe and 

foam) 

97

Hyperelastic (Mooney-Rivlin only) 9 

Shape memory alloy (SMA)  

Viscoelastic  

 

Notes: 
1. Temperature
2. With MATS
3. Cannot be used with beam element for SOL 601. Can only be used with rod element 

4. W
5. With MATS
6. With MATS
7. Only Moone lable 

in Solution 7

Table 3

 interpolation at the start of the analysis only in Solution 701. 
1 TYPE=NELAST. 

for SOL 701. 
ith MATS1 TYPE=PLASTIC. 

1 TYPE=PLASTIC and TID pointing to a TABLEST entry. 
1 TYPE=PLASTIC and TID pointing to a TABLES1 entry. 
y-Rivlin, Ogden and Sussman-Bathe hyperelastic materials are avai
01. 

.1: Material models available in Advanced Nonlinear Solution 
(continued) 
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3.1  Stress and strain measures 

• It is important to recognize which stress and strain measures are 
employed in each material model: this is necessary in the 
preparation of the input data and the interpretation of the analysis 
results. 

 
• This section summarizes the stress and strain measures in 
Advanced Nonlinear Solution and how they are used with the 
different element types and nonlinear features. More details on 
stress/strain measures are provided in ref. KJB, Section 6.2. 

 
3.1.1  Kinematic formulations 

 
Small displacement/small strain kinematics 

 
Input of material parameters: All elements and material models 
use the engineering stress-engineering strain relationship. 

 
Output: All elements and material models output Cauchy stresses 
and engineering strains. 
 
• Using a linear material model with small displacement/small 
strain kinematics results in a linear finite element formulation. 
 
• Using a nonlinear material model with small displacement/small 
strain kinematics results in a materially-nonlinear only (MNO) 
formulation. 

 
Large displacement/small strain kinematics  

 
Input of material parameters: 2nd Piola-Kirchhoff stresses and 
Green-Lagrange strains. Note that under small strain conditions, 2nd 
Piola-Kirchhoff stresses are nearly equal to engineering stresses, 
and Green-Lagrange strains are nearly equal to engineering strains. 
Strains should be less than 2%. 

 
Output:  The output depends on the element type. Note that as long 
as the strains are small, Green-Lagrange strains are practically the 
same as engineering strains in the element coordinate system. 
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Similarly, 2nd Piola-Kirchhoff stresses are practically the same as 
Cauchy stresses in the element coordinate system. 
 

(1) 2-D, 3-D solid elements: all supported material models 
output Cauchy stresses and Green-Lagrange strains. 

 
(2) Shell elements: all supported material models output 2nd  
Piola-Kirchhoff stresses and Green-Lagrange strains. 

 
(3) Rods and beams: all supported material models output 
Cauchy stresses and engineering strains in the element 
coordinate system. 
 

Large displacement/large strain kinematics 
 

This kind of formulation can only be used with 2-D and 3-D solid 
elements and with shell elements. 

 
For 2-D and 3-D solid elements 

 
(1) Both the updated Lagrangian Hencky formulation and the 
updated Lagrangian Jaumann formulation can be used with 
elastic-plastic materials (including thermal and creep effects). In 
this case, 

 
Input of material parameters: Cauchy (true) stresses and 
logarithmic (true) strains. 

 
Output:  

ULH formulation: Cauchy stresses and logarithmic 
strains in the element coordinate system. 

ULJ formulation: Cauchy stresses and Jaumann strain 
 

(2) For hyperelastic materials a total Lagrangian formulation is 
used. In this case,  

 
Input of material parameters: Hyperelastic material 
constants. 
 
Output: Cauchy stresses and Green-Lagrange strains in the 
element coordinate system. 
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or shell elements F  

Both the updated Lagrangian Jaum
upd

e 

e) stresses and 
logarithmic (true) strains. 

Output: Cauchy stresses and Jaumann strains. 

Output: Kirchhoff stresses and left Hencky strains 
(practically equivalent to Cauchy st
strains). 

 
3.1.2  Stra

 
ain measures used in Advanced Nonlinear Solution are 

 
ann (ULJ) formulation and the 

ated Lagrangian Hencky (ULH) formulation can be used. For 
more details on how these formulations apply to shell elements, se
Section 2.3. 
 

Input of material parameters: Cauchy (tru

 
When the ULJ formulation is used: 
 

 
When the ULH formulation is used: 
 

resses and logarithmic 

in measures 

The str
illustrated here in the simplified case of a rod under uniaxial 
tension (see Fig. 3.1-1). 
 

�

�

�

0

F

A

A0

F

A = initial cross-sectional area0

S = final cross-sectional
F = applied force

= +0 �

 
 

Figure 3.1-1: Rod under uniaxial tension
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Engineering strain: 0
0

0

e −
=  

 

Green-Lagrange strain: 
2 2

01
2
02

−
ε =  

 

 
Logarithmic strain, Hencky strain, Jaumann strain: 
 

00

ln de
⎡ ⎤⎛ ⎞

= =⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠ ⎣ ⎦

∫  

 

Stretch: 
0

 

λ =  

• Note that for the small strains assumption to be valid, the strains 
should be less than about 2%. 

• Green-Lagrange strains are used in the large displacement/small 
train formulations. This is because this strain measure is invariant 

 rotated engineering strains are 
quivalent. 

• Engineering strains are also called nominal strains in the 

 
 

3.1.3  Stres

s vanced Nonlinear Solution include 
engineering stresses, 2nd Piola-Kirchhoff stresses, Kirchhoff 
stresses, and Cauchy stresses (see ref. KJB). These stress measures 
are illustrated here in the simplified case of a rod under uniaxial 

 

ref. KJB
Sec. 6.2.2 s

with respect to rigid-body rotations. Therefore, for small strains, 
Green-Lagrange strains and the
e

 

literature. 
 
• Logarithmic strains are also known as true strains.

s measures  
 
The stress measure used in Ad

tension (see Fig. 3.1-1). 
 

Engineering stress: 
0

F
A

σ =  
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Cauchy stress: 0AF
A A

στ = =  

nd

 

2  Piola-Kirchhoff stress: 0 0

0

FS
A

σ
= =  

 

Kirchhoff stress: 
0 0 0

F
A

J στ = =  

• 
 

• compressible, 

 
Cauchy stresses are also called true stresses in the literature. 

For the case in which the material is in

0

J στ = τ =

Ki
 

hhoff stresses are 

 

 stresses. 
 

g, the differences between Kirchhoff and Cauchy stresses 
re negligible. 

 
3.1.4  Larg
formulatio

 

 
 strain 

is with the ULH formulation. For further 
information, see ref KJB, Section 6.6.4 and also the following 
references: 

 can be used to compute the Cauchy stress and the 

rchhoff stress from the engineering stress. 

• When the strains are small, the 2nd Piola-Kirc
nearly equal to the Cauchy stresses from which the rigid body 
rotations of the material have been removed. 

• When the volume change of the material is small, the Kirchhoff 
stresses are nearly equal to the Cauchy

• Since Kirchhoff stresses are input/output only for large strain 
analysis with materials that are nearly incompressible, practically 
speakin
a

e strain thermo-plasticity and analysis with the ULH 
n 

• This section discusses the ULH formulation for large strain 
analysis. ULH stands for updated Lagrangian Hencky. 

• The following is a quick summary of the theory of large
inelastic analys
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F. Co
large strain elasto-plasticity: an algorithm for mixed 

ng, 

ref. M. Kojić and K.J. Bathe, Inelastic Analysis of Solids and 
Structures, Springer-Verlag, 2003. 

 

n at time 0. For ease of writing, we do not 

ight stretch tensor: The 
tal deformation gradient tensor X can be decomposed into a 

material rigid-body rotation tensor R and a symmetric positive-
definite (right) stretch tensor U (polar decomposition): 

 

 
ref. J. Montáns and K.J. Bathe, " mputational issues in 

hardening and plastic spin", Int. J. Numer. Meth. Eng
2005; 63;159-196. 

 

Total deformation gradient tensor: Let X be the total 
deformation gradient tensor at time t with respect to an initial 
onfiguration takec

include the usual left superscripts and subscripts.  
 

olar decomposition into rotation and rP
to

 
=X R U  (3.1-1) 

tch 
nsor U can be represented in its principal directions by a diagonal 

tensor  , such that 
 

bal axes 

wo representa  of the same deformed state, 
respectively in the global coordinate system and in the U principal 

 
Principal directions of right stretch tensor: The right stre
te

Λ

  L L=U R Λ  (3.1-2) 
 
where  LR  is a rotation tensor with respect to the fixed glo
(see Figure 3.1-2). 

TR

(Note that the rotation LR  does not correspond to a material 
rigid-body rotation, but to a rotation of the coordinate system: U 
and Λ  are t tions

directions coordinate system.) 
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L(t)

(0)
x

Ry

R

(0) Initial configuration at time 0

Configur

(t)

ation at time t not including rigid body rotation

Configuration at time t

Directions of maximum

R

L

/minimum total stretches

Directions of initial configuration fibers withR

total stretches and strains  
 
 

n tensor: The Hencky strain tensor (computed 
 the right basis) is given by 

and strains

Material rigid-body rotation between time 0 and time t

maximum/minimum total stretches and strains

Figure 3.1-2: Directions of maximum/minimum

Right Hencky strai
in
 
  ln lnR T

L L= =E U R Λ R  (3.1-3) 
 
The superscript “R” symbolizes the right basis. 
 

ol

tretch tensor V (polar decomposition): 
 
  

P ar decomposition into rotation and left stretch tensor: The 
total deformation gradient tensor X can also be decomposed into a 
material rigid-body rotation R and a symmetric positive-definite 
(left) s

=X V R  (3.1-4) 
 
R in (3.1-4) is the same as R in (3.1-1). 
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Principal directions of left stretch tensor: The left stretch tensor 
V can be represented in its principal directions by a diagonal tensor  

, such that Λ
 
  T

E E=V R Λ R  (3.1-5)
 

here 

 

ER  is a rotation tensor with respect to the fixed global axes. w
Note that E L=R R R . 
 
Left Hencky strain tensor: The Hencky strain tensor (computed 

 the left basis) is given by 

 

in
 

ln lnL T
E E= =E V R Λ R  (3.1-6) 

The superscript “L” symbolizes the left basis. 
 
Comparison of left and right Hencky strain tensors: The 
principal values of the left and right Hencky strain tensors are 
identical, and equal to the logarithms of the principal stretches. 
Hence both of these strain tensors can be considered to be 
logarithmic strain tensors. However, the principal directions of the 
left and right Hencky strain tensors are different. The principal 
directions of the right Hencky strain tensor do not contain the rigid 
body rotations of the material, but the principal directions of the 

terial undergoing rigid body rotations, the 
rincipal directions of the right Hencky strain tensor do not rotate, 

however the principal directions of the left Hencky strain tensor 
rotate with the material. Hence, the left Hencky strain tensor is 
preferred for output and visualization of the strain state. 

 
Multiplicative decomposition of deformation gradient in 
inelastic analysis: In inelastic analysis, the following 
multiplicative decomposition of the total deformation gradient into 
an elastic deformation gradient 

 

left Hencky strain tensor contain the rigid body rotations of the 
material.  

Therefore, for a ma 
p

EX  and an inelastic deformation 
gradient  is assumed: PX
 
  E P=X X X  (3.1-7) 
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e 
s state, the deformation gradient is still X. Now if the 

tress state is removed, (3.1-7) implies that the deformation 
gradient of the unloaded material is . The stresses are due 
entirely to the strains associated with the elastic deformation 
gradient 

 To understand (3.1-7), consider a small region of material under 
a given stress state with deformation gradient X. If this region of 
material is separated from the rest of the model and subjected to th
same stres
s

PX

EX . 
 It can be shown (see Montáns and Bathe), that (3.1-7) is 
equivalent to the additive decomposition of the displacements into 
elastic displacements and plastic displacements.  
 For the materials considered here, 

ic 
e decomposed into an elastic rotation 

nsor

det 1P =X . 
 
Polar decomposition of elastic deformation gradient: The elast
deformation gradient can b

 ER  and elastic right and left stretch tensors EU , EVte : 
 
  E E E E E= =X R U V R  (3.18-a,b) 

 The elastic Hencky strain tensors 
in the right and left bases are given by 
 
  

 
Elastic Hencky strain tensors:

ln , lnER E EL= =E U E EV  (3.1-9a,b) 

 

the strain measures used. When the right Hencky strain measure is 
used, the stress measure used is the rotated Kirchhoff stress 
 
  

 
Stress-strain relationships: The stresses are computed from the
elastic Hencky strain tensors using the usual stress-strain law of 
isotropic elasticity. However, the stress measures used depend upon 

( )TE EJ=τ R τ R  (3.1-10) 

 
and when the left Hencky strain measure is used, the stress measure 
is the (unrotated) Kirchhoff stress Jτ . detJ = X is the volume 
change of the material, and, using . 
 With these choices of stress and strain measures, the stresses 
and strains are work-conjugate.  

det 1, detP EJ= =X X
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 The choice of right Hencky strain and rotated Kirchhoff stresses 
e choice of left Hencky strain 

. 

gives the same numerical results as th
and (unrotated) Kirchhoff stresses. 
 
Implementation notes: For 2-D and 3-D solid elements, the 
difference between the Cauchy and Kirchhoff stresses is neglected
The stress measure used with the right Hencky strains is 

( )TE E=τ R τ R . The input of material properties is assumed to be 

es. 

a

 
3.1.5  Larg

 

 The following is a quick summary of the theory of large strain 
sis with the ULJ formulation: 

 
es, Springer-Verlag, 2003. 

 
y gradient tensor: The velocity

in terms of Cauchy stresses, and the output of stresses is in terms of 
Cauchy stresses. 
 For shell elements, Kirchhoff stresses are used throughout. The 
input of material properties is assumed to be in terms of Kirchhoff 
stresses, and the output of stresses is in terms of Kirchhoff stress
 These assumptions are justified because they are used with 
m terial models in which the plastic deformations are 
incompressible and the plastic deformations are generally much 
larger than the elastic deformations.  

e strain thermo-plasticity analysis with the ULJ formulation  

• This section discusses the ULJ formulation for large strain 
inelastic analysis (ULJ formulation). ULJ stands for updated 
Lagrangian Jaumann. 
 
•
inelastic analy
 
For further information, see ref KJB, Section 6.2.2 and also the 
following reference: 

 
ref. M. Kojić and K.J. Bathe, Inelastic Analysis of Solids and

Structur

Velocit  gradient tensor is defined 
as 
 

 1
t

i
t

j

u
x

−
⎡ ⎤∂

= =⎢ ⎥ -11) 
∂⎢ ⎥⎣ ⎦

L XX  (3.1
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pect to the current 
oordinates. 

 

nsor is defined as 

Notice that the derivative is taken with res
c

Rate of deformation tensor, spin tensor: The rate of deformation 
te
 

 ( )1
2

T= +D L L  (3.1-12)

 
and the spin tensor is

 

 defined as 
 

 ( )1
2

T= −W L L  (3.1-13) 

 
 symmetric part of L and W is th

L.  
 

ge of 

J

 
he quantity

D is the e skew-symmetric part of 

Rate of change of Jaumann strain tensor: The rate of chan
the Jaumann strain is defined as 
 
 W  (3.1-14) J J= + −ε D Wε ε

 JεT  is termed the Jaumann strain in analogy with the 
re often-used Jaumann stress. But we do not use the Jaumann 

tress in the ULJ formulation.  
 

nn strain tensor:  In practice
puting the Jaumann strain tensor, i.e.  

mo
s

Jauma , increments are used in 
com
 
 ( ) ( ) (t J t J t Jt t )t+∆t t J + ∆ + ∆ −ε D W ε ε W= ∆ε  (3.1-15) 

nn hen 

 the 

ain can be used as an approximate replacement for the 
ft Hencky strain. The Jaumann strain can be computed more 

 
Comparison of Jauma  strain with left Hencky strain:  W
the rate of change of the principal directions of the left stretch 
tensor V is zero, the rate of change of the left Hencky strain is
same as the rate of change of the Jaumann strain. Hence the 
Jaumann str
le
efficiently than the left Hencky strain, because it is not necessary to 
take the square root or logarithm of a tensor when computing the 
Jaumann strain. On the other hand, the time step size affects the 
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es the 

tation, the Jaumann strain also rotates, with the rotation of the 

ich the final 
eformations equal the initial deformations can produce (non-

n strains, even in the limit of 
finitesimally small time steps.  

 
Stress-strain relationships: In elasto-plasticity, the same 

s are used as in small-strain elasto-plasticity. The 
echanical strains are computed as the total strains minus the 

, in w al 
aumann strains.  

ulation, the stresses are Cauchy stresses for 
resses for shell elements. 

3.1.6  Ther ains 

 Calculation of thermal strains is needed for temperature-
o-elastic 

rthotropic, thermo-plastic), as well as temperature-invariant 
ro thermal expansion coefficients. 

 current temperature 

Jaumann strain, so that finite time step sizes lead to an error in the 
calculation of the Jaumann strain.  
 For a uniaxial deformation, the Jaumann strain approach
logarithmic strain as the step size is reduced. For a rigid-body 
ro
Jaumann strain approaching the expected rotation as the step size is 
reduced.  
 It can also be shown that the Jaumann strain is path-dependent 
in general, so that a deformation history in wh
d
physical) non-zero Jauman
in

algorithm
m
plastic strains (and also any thermal strains) hich the tot
strains are the J

As in the ULH form 
2-D / 3-D elements, and are Kirchhoff st
 
mal str
 
•
dependent material models (thermo-elastic isotropic, therm
o
material models with non-ze
 

tθ  • The and the initial temperature 
0θ (corresponding to zero thermal strains) are both needed for the 
alculation of thermal strains. The current temperature field is set 

con ails. 

evaluated based on 
al temperatures and the element shape functions, and then 
 calculate the thermal strains. 

 
 

c
via the TEMPERATURE(LOAD) case control entry, while the 
initial temperature is set via the TEMPERATURE(INITIAL) case 

trol entry. See Section 5.6 for more det
 
 The temperature at an integration point is •

the nod
used to
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 For isotropic temperature independent materials, the following 

 

•
expression is used for thermal expansion. 
 

( )0t TH t
ij ije α θ θ δ= −  (3.1-16) 

 
ijδ  is the Kronecker delta ( ijδ or i = j and ijδ = 0 for where = 1 f

i j≠ ). 

 If the thermal expansion is temperature dependent and isotropic, 
  
•
the thermal strains are calculated as follows: 
 

( )0t TH t t
ij ije α θ θ δ= −  (3.1-17) 

here 
 
w
 

( ) ( )( ) ( )( )( )0 0
0

1t t t
REF REFt

α α θ θ θ α θ θ θ
θ θ

= − −
−

  −

 (3.1-18) 
 
and REFθ  is the material reference temperature. 
 
• For temperature independent orthotropic materials Eq. (3.1-16) 

cient vector,  is replaced by a thermal expansion coeffi
 
 ( )0 (no summation over )t TH t

ij i ije iα θ θ δ= −  (3.1-19) 

 
• For temperature dependent orthotropic materials Eq. (3.1-17) 
and Eq. (3.1-18) are modified for each direction similar to Eq. 
(3.

 

1-19). 
 
• Equations (3.1-17) and (3.1-18) are derived as follows: Suppose
that, from experimental data, the dependence of the length of a bar 
as a function of temperature is obtained, as shown in Fig. 3.1-3. 
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Temperature, �
�REF �

L
en

g
th

,
L Secant to curve

L

LREF

 Figure 3.1-3: Length of bar vs. temperature 

  
 

The thermal strain with respect to the reference length may be 
calculated as 
 

 TH REFL Lε
REFL

−
=  

 
Then we define the mean coefficient of thermal expansion for a 
given temperature as follows: 
 

 ( ) ( )TH

REF

ε θ
α θ

θ θ
=

−
 

 
With this definition, the secant slope in Fig. 3.1-3 is ( )REFL α θ . 

Now, in Solution 601, we assume that the thermal strains are 
initially zero. To do this, we subtract the thermal strain 
corresponding to 0θ  to obtain 

 
 ( )( ) ( )( )0 0t TH t t

REF REFε α θ θ θ α θ θ θ= − − −  

 
which leads to Equations (3.1-17) and (3.1-18).  

Notice that if the mean coefficient of thermal expansion is 
constant, REFθ  no longer enters into the definition of tα  and the 
equations reduce to Eq. 3.1-16. In general, when the m
coefficient of thermal expansion is not constant, 

ean 
REFθ  must be 
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chosen based on knowledge of the experiment used to determine 
( )α θ  since the same material cu  REFθ  rve, different choices of

yield different values of ( )α θ . 
 

3.2  Linear elastic material models 

ing ma odels are discussed in this section: 
 

t 

 
Elastic-orthotropic: orthotropic linear elastic non-thermal 

ith MAT2 and MAT8 for 
surface elements and MAT9 and MAT11 for 3-D solid elements 

 
• hese models can be employed using small 
dis
kinematics. The strains are always assumed to be small. 
 
• hermal strains are supported for the elastic isotropic materials 
and
 
• When the elastic-isotropic and elastic-orthotropic materials are 

 

ulation is 
utomatically selected by the program depending on which 

n, while 
ion. 

 
• In the small displacement formulation, the stress-strain 
relationship is 

 

The follow terial m• 

Elastic-isotropic: isotropic linear elastic non-thermal dependen
material model obtained with MAT1 

dependent material model obtained w

T
placement/small strain or large displacement/small strain 

T
 the elastic-orthotropic materials.  

used with the small displacement formulation, the formulation is 
linear. 

• If the material models are employed in a large displacement 
analysis, the total or the updated Lagrangian form
a
formulation is numerically more effective. 2-D, 3-D solid elements 
and shell elements use a total Lagrangian (TL) formulatio
rods and beams use an updated Lagrangian (UL) formulat

 

0 0
t tσ = C e   
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in which 0
t σ  = engineering stresses and  = engineering strains. 

 
• In the large displacement total Lagrangian formulation, the 
stress-strain relationship is 
 

 

0
t e

0 0
t t= εS C  

 
in which  = second Piola-Kirchhoff stresses and  = Green-
Lagrange strains. 
 
• In the large displacement formulation, used by rod and beam 
elements, the stress-strain relationship is  
 

0
t S 0

t ε

*t t
tτ = εC  

 
t τ  = Cauchy stresses and *t

t εin which  = rotated engineering strain. 

 
sis: 

 
• In the presence of thermal strains the following stress-strain
relationship is used instead in small displacement analy
 

( )0 0 0
t t t THσ = −C e e  

 
where 0

t THe are the thermal strains. A similar t THε and *t THε  term0 0  is 

 

 
ce in the response 

predictions is very
aterial 

ref. KJB
Section 6.6.1

added for the TL and UL formulations, respectively. The 
calculation of thermal strain is detailed in Section 3.1.6. 

• The same matrix C is employed in all of these formulations. As 
long as the strains remain small, the difference in the responses is 
negligible. 

• However, if the strains are large, the differen
 significant (see ref. KJB, pp 589-590). If the 

strains are large, it is recommended that these linear elastic m
models not be used. 
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3.2.1  Elas -
 

• This material model is available for the rod, 2-D solid, 3-D 
solid, beam, and shell type elements. 
 
• The two material constants used to define the constitutive 

 
 E s modulus, v = Poisson's ratio 
 

icient

tic isotropic material model 

relation (the matrix C) are 

= Young'

• The thermal expansion coeff  α  is also used if thermal 
strains are present. 
 

3.2.2  Elastic-orthotropic material model 

•  

ding to the global coordinate 
system. 
 
• The thermal expansion coefficient 

 
• The elastic-orthotropic material model is available for the 2-D 
solid, 3-D solid and shell elements. 
 

Material constants are defined along material axes (1,2,3). The
local constitutive matrix Cmat is then transformed to obtain the 
stress-strain matrix C correspon

α  is also used if thermal 
strains are present. 
 
• he different Poisson’s ratios always satisfy the following 
relationship 

T

ij ji

i jE E
ν ν

=  

 
•  addition, to ensure that the material constants result in a 
po s must 

 

In
sitive definite constitutive matrix, the following inequalitie

hold: 
1
2E⎛ ⎞

, , , ,j
ji

i

i j a b c
E

ν < =  ⎜ ⎟
⎝ ⎠
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 2 2 2a b cE E E0.5 1 0.5ba cb ac ba cb ac
b c aE E E

ν ν ν ν ν ν< − − − ≤⎜ ⎟  

 The orthotropic 3-D material is defined either 
using the MAT9 entry or the MAT11 entry. When the MAT9 entry 
is used, the following assumptions are made: 
 
C14 = C15 = C16 = C24 = C25 =C26 = C34 = C35 = C36 = 0 
 

56 = 0. 

0 0 0
0 0 0
0 0 0

C C C e
C C e

C e

σ

⎛ ⎞

⎝ ⎠
 
3-D solid elements:

and 
 
C45 = C46 = C
 
resulting in  

 

11 11 12 13 11

22 22 23 22

33 33 33

12 44 12

23 55 23

31 66 31

symmetric

0 0
0

C
C

C

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥σ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥σ

=⎢ ⎥ ⎢ ⎥⎢ ⎥τ γ⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥τ γ
⎢ ⎥ ⎢ ⎥⎢ ⎥
τ γ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

When the MAT11 entry is used, the following inverse stress-strain 

 

 

relationship is used:   

11

22 22

33

12

23 23

31

0 0
e
e
e

 

1 12 1 13 1

21 2 2 23 2

1/ / / 0 0 0
/ 1/ / 0
E E E

E E E
−ν −ν11

31 3 32 3 3 33

12 12

23

13 31

00

/ / 1/ 0 0 0
0 0 0 1/ 0 0

0 0 1/ 0
0 0 0 0 0 1/

E E E
G

G
G

τ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥−ν −ν τ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥γ τ⎢ ⎥ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥γ τ
⎢ ⎥ ⎥⎢ ⎥
γ τ⎢ ⎥ ⎢⎣ ⎦ ⎣

 

 

 

⎢ ⎥−ν −ν τ
⎢ ⎥
⎢

⎢
⎥ ⎢ ⎥⎦ ⎣ ⎦

The MATCID entry can be used to define the material coordinate 
system (when using either the MAT9 or MAT11 entries). 
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usi -

   
 

1212

23

/ 1/ 0 0 0e E E

Shell elements: The orthotropic shell material is preferably defined 
ng the MAT8 entry, which leads to the following inverse stress

strain relationship defined in the shell material coordinate system 
(1,2,3):

11 1 12 11/ / 0 0 0e E E 11σ

22 2221 2 2

12 0 0 1/ 0 0G

−ν⎡ ⎤ ⎡ ⎡ ⎤⎤
⎢ ⎥ ⎢⎢ ⎥ ⎥σ−ν⎢

13 1310 0 0 1/ 0
0

zG

⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=γ σ
⎢ ⎥ ⎢ ⎥⎢ ⎥γ σ

23 20 0 0 1/ zG
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎢ ⎥⎥γ σ⎣ ⎦⎣ ⎦

 
The MAT2 entry can also be used to define a shell material with 
only in-plane orthotropy: 
 

σ

⎣ ⎦

 

33 23

0 0 0

0 0 0 0

C C e

C   

11 11 12 11

22 12 22 220 0 0C C e
⎡ ⎤ ⎡ ⎤⎡ ⎤

12 33 12

13 33 13

23

0 0 0 0
0 0 0 0

C
C

⎢ ⎥ ⎢ ⎥⎢ ⎥σ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=τ γ
⎢ ⎥ ⎢ ⎥⎢ ⎥τ γ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥τ γ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
is 

and. This leads to the following 
tress-strain relationship defined in the (x,θ,z) plane: 

 

2-D axisymmetric solid elements: The orthotropic 2-D material 
defined using the MAT3 comm
s

1 0x xx zx

x

e
E E E

θ
σ

1 0x zeθ θ θ

1 0

x z

xz z
z z

x z

E E E

e
E E E

θ

θ

θ

10 0 0
zx

zxG

z

zx

θ

θ

⎡ ⎤ ⎡ ⎤ν ν⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎢ ⎥⎥
⎢ ⎥ ⎢ ⎥ν ν⎢ ⎥

− − σ⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ν ν

− −⎢ ⎥ ⎢ ⎥σ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

 

⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥γ σ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢⎣ ⎦ ⎥⎣ ⎦ ⎣ ⎦
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3.3  Nonlin

lastic 
aterial for the rod, 2-D solid, 3-D solid and shell elements. The 

onlinear effect is obtained with a MATS1 entry which has 
YPE = ‘NELAST’. The formulations used for the rod element are 
lightly different (and simpler) and are detailed in Section 3.3.1. 

 
 This material uses a nonlinear elastic uniaxial stress-strain data 

s
r odel 

 

 
ed.  

compression, the material response will follow the input curve 

ear elastic material model 

 Advanced Nonlinear Solution supports the nonlinear e•
m
n
T
s

•
input in tabular form and shown in Fig. 3.3-1. This material is not 

a ed on the classical theory of finite elasticity, and is not intended b
fo  large strain analysis. However, it is a useful material m
when used appropriately, and with awareness of its limitations. 
 
• Note that the material unloads along the same curve, so that no

ermanent inelastic strains are introducp
 
• The material can have different stress-strain curves in tension 
and compression. Under predominantly uniaxial tension or 

exactly. Under shear dominated loading, the stress is interpolated 
from both tension and compression parts of the material stress-
strain curve.  
 

�




�




Figure 3.3-1: Stress-strain behavior of

model

nonlinear elastic material
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• In order to use the unaxial stress-stain data ( )σ ε  of Fig. 3.3-1, 
the effective stress and strain (σ  and ε ) must be calculated based 

-D ors 
ses ss, w  

on the 2  or 3-D total stress and strain tens σ  and ε ). The 
von-Mi  stress is used as the effective stre hile the effective
strain is based on 
 
  

(

Td dσ ε =∫ ∫σ ε  (3.3-1) 

 
which equates the deformation work per unit volume in unaxial 
loading to the multi-dimensional state. This results in a unique 
equation for ε  as a function of ε , ν  and the stress-strain state that

epends on the element type. 
 

d
 
• The effective strain, ε , is defined by 
 

2  0 02 2
 

1 1 TE ε = ε C ε  (3.3-2) 

here E  is Young’s modulus which is determined by the most 

ng  and 

w  0

stiff region of the input stress-strain curve, 0C  is the elastic stress-
 0E νstrain matrix obtained usi . (  cancels out from both 

sid
l strain, we 

hav

 

0

es of Eq. (3.3-2)) 
 Differentiating Eq. (3.3-2) with respect to the tota

E

e 
 

 0
0

Td d
E

ε
ε

= ε C ε  (3.3-3)

 

1
 

Substituting Eq. (3.3-3) into Eq. (3.3-1), the stresses can be 
expressed in terms of total strains, i.e., 
 

  0
0E

σ
ε

4) 

r 

=σ C ε  (3.3-

 
o
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0E e

σ
ε

=σ σ  (3.3-5) 

her
 
w e e 0=σ C ic .  
 
 Th ect ress

ε  wh h is the elastic trial stress

• e eff ive st  σ  is taken from the tensile part of the 
predominantly tensile loading, from the stress in cu for 

p n p f th
p

ther
 

Th is tang
iffer ting Eq. (3.3  the total strain 
enso  st trai  

ssio din
se d i -sy

etwe c  is 
mm   m .  

N  d tin
train e. T e

interpolation within the table and linear extrapolation outside the 
le  th a

Stress update algorit

 a io v

-stra rve 
com
com

ressio
ression loading and is interpolated between the two curves 

art o e stress-strain curve for predominantly 

o wise. 

• 
d

e cons
entia

tent ent stress-strain matrix is obtained by 
-4) or (3.3-5) with respect to

t r. The ress-s n matrix is symmetric in predominant tensile
g (when only one of the two or com

is u
pre

d), an
n loa
s non

material curves 
mmetric otherwise (when interpolation 

b
sy

en the 
etrized

urves
and in

required). The constitutive matrix is 
ost cases reasonable convergence is obtained

 
• ote that iscon uities are not allowed in user-supplied stress-
s  curv he tabl  look-up is performed using linear 

tab
 

using e two st rting or ending points. 

hm 
 
For n iterat n , gii en , , , 0 , tσ t ε ( )t t i+∆ u E ν , update σ( )t+∆t i , 

 
Step 1. Calculate the new total strain state  based on 
isplacements 

e

( )i  t t+∆ ε

( )t t i+∆ ε
( )t t i+∆ u  d

 
Step 2. Calculate the elastic trial stress, 
 

 t t t t+∆ +∆=σ C ε  (3.3-6)  0

 
Step 3. Compute the magnitude of the effective strain, ε . 
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Step 4. Calculate the ratio  
 

  1e

t t
e

I
r C

σ+∆=  (3.3-7) 

 
where  is a constant that biases the general stress state towards 
the pure tension or compression curves and is internally set to 3/2, 

 C

1e
I  is the first elastic stress invariant, and t t

eσ+∆  is the effec
elastic stress which is calculated as follows, 
 

tive 

  0
t t t t

e Eσ ε+∆ +∆=  (3.3-8) 
 
Restrict r  to be between -1 and 1. 
 
Step 5. Calculate the effective stress in tension tσ  and in 
compression cσ , based on the user-supplied stress-strain curve and 
ε , as follows: 
 
  ( )t t t t t t

tσ σ ε+∆ +∆ +∆=  (3.3-9) 
 
  ( )t t t t t t

cσ σ ε+∆ +∆ +∆= − −  (3.3-10) 

lculate the actual effective stress,
 
Step 6. Ca t tσ+∆ , as 
 

  
1t t r r1

2 2
t t t t

t cσ σ σ+∆ +∆+∆ + −
+  (3.3-11) 

Step 7. Evaluate the new stress state by 

=

 

 

  
0

t t t t
et tE ε

+∆ +∆
+∆=σ σ  (3.

 
Step 8. Evaluate the tangential stress-strain matrix and symmetrize
it. 

t tσ+∆

3-12) 
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3.3.1  Nonl e

defined as a 
iecewise linear function, as shown in Fig. 3.3-2. 

 

in ar elastic material for rod element 
 
• For the rod element, the stress-strain relationship is 
p

�

�

�

�

�

�

Stress

�6

�5

�4

�3

�2

�1

e1 e2 e3

e4 e5 e6 Strain

Figure 3.3-2: Nonlinear elastic material for rod elements  
 

Note that the stress is uniquely defined as a function of the 
strain only; hence for a specific strain te, reached in loading or 
unloading, a unique stress is obtained from the curve in Fig. 3.3-2. 

 
• A sufficient range (in terms of the strain) must be used in the 
definition of the stress-strain relation so that the element strain 
evaluated in the solution lies within that range; i.e., referring to Fig. 
3.3-2, we must have 1 6

te e e≤ ≤  for all t. 
 
• The stress-strain curve does not necessarily have to pass through 
the origin. 

 
• A typical example of the nonlinear elastic model for rod 
elements is shown in Fig. 3.3-3. This example corresponds to a 
cable-like behavior in which the rod supports tensile but no 
compressive loading. 
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Stress

Strain

�

� �

Point 1 Point 2

Point 3

Figure 3.3-3: Nonlinear elastic material model corresponding to a

tension-only cable  
 

• The rod element with this nonlinear elastic material model is 
particularly useful in modeling gaps between structures. This 
modeling feature is illustrated in Fig. 3.3-4. Note that to use this 
element to simulate a contact gap, it is necessary to know which 
node of one body will come into contact with which node of the 
other body, and connect these two nodes with a rod element. 

 
 

 

�

�

m

n

Gap �
Gap element

(between nodes and )m n

�_
L

Strain

Stress

L

Figure 3.3-4: Modeling of gaps  
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3.4  Elasto-plastic material model 

• Elasto-plastic materials are defined using the MATS1 material 
entry with TYPE = ‘PLASTIC’. This section describes the 

Plastic: Elasto-plastic isotropic non-thermal dependent 
material. 
 

atio  

 

f An associated f

 and 
TID fields in MATS1) 

Figs. 3.4-1 to 3.4-3 summarize some important features of these 

 
• These mod

(plastic-bilinear only), and shell elements. 

 All elastic and plastic material constants are thermally invariant. 
owever, thermal strains can be present when there is a 
mperature load and a coefficient of thermal expansion. 

 

following material model: 
 

• All elasto-plasticity models use the flow theory to describe the 
elastic-plastic response; the basic formul ns for the von Mises
models are summarized on pp. 596-604, ref. KJB. 

hese material models are based on • T
 

f The von Mises yield condition (see p. 597, ref. KJB) 
 

low rule using the von Mises yield function 
 
f Isotropic, kinematic, or mixed hardening 
 
f Bilinear or multilinear stress-strain curves (based on H

 

material models. 

els can be used with the rod, 2-D solid, 3-D solid, 
beam 
 
•
H
te
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0
y�

Stress

Strain

Bilinear stress-strain curve

Multilinear stress-strain curve

Figure 3.4-1: von Mises model  

 

 
 

 
�3

s3

�

 

s��
s�

a) Principal stress space

�2
3

0
y�

�2 0
y�

3

Elastic region

b) Deviatoric stress space

(1,1,1)

Figure 3.4-2: von Mises yield surface  
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b) Bilinear kinematic hardening

E

E

E

E

E

T

T

0
y�

a) Bilinear isotropic hardening

Stress

Strain
t

y�

t�y E

E

E

E

E
T

T

0
y�

Stress

S ntrai

20
y�

0
y� 0

y�
t

y�

t
y�

0
y�

Strain Strain

Stress Stress

c) Multilinear isotropic hardening

2

d) Multilinear kinematic hardening

Figure 3.4-3: Isotropic and kinematic hardening  
 
 

• hese models can be used with small displacement/small 
str
dis
 
ma  formulation is employed.  
 lacement/small strain kinematics, 
either a TL or a UL formulation is employed (depending on 
element type). 
 
UL ulation or a ULJ fo
displacement/large strain kinematics can only be used with the 2-D 

T
ain, large displacement/small strain and large 
placement/large strain kinematics. 
When used with small displacement/small strain kinematics, a 

rially-nonlinear-onlyte
When used with the large disp

When used with large displacement/large strain kinematics, a 
H form rmulation can be employed. Large 
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solid, 3-D solid and shell elements (only single layer shell 
ele ). 

• 
of stress-strain points in the stress-strain curve. 

• ixed hardening is available only for bilinear plasticity. 
 
• Plane strain, axisymmetric or 3-D solid elements that reference 
these material models should preferably employ the mixed 
dis ssure lement formulation. This is done by 
setting UPFORM = 1 in the NXSTRAT command. 

• In the von Mises model with isotropic hardening, the following 
yield surface equation is used: 

ments
 
For multilinear plasticity, there is no restriction on the number 

 
M

placement-pre  (u/p) e

 

 

 ( ) 21 1 0t t t t
y yf σ

2 3
= ⋅ − =s s  

 
0 2

yσwhere ts is the deviatoric stress tensor and  the updated yield 
str

 
ess at time t. 
In the von Mises model with kinematic hardening, the following

yield surface equation is used: 
 

( ) ( ) 0 21t t 1 0t t tf σ 
2 3y y= − ⋅ − − =s α s α  

 
where  is the shift of the center of the yield surface (back stress 
ten

tα
sor) and 0 2

yσ  is the virgin, or initial, yield stress. 
on Mises model with mixed hardening, the following In the v

yield surface equation is used: 
 

 ( ) ( ) 21 1 0
2

t t t t t t
y yf σ

3
= − ⋅ − − =s α s α  

 
where 
 0t p

y y pMEσ σ= + e  
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The back stress tα  is evolved by 
 
 ( )1 p

pd C M d= −α e  
 
Cp is Prager’s hardening parameter, related to 

modulus Ep and M is the factor used in general mixed hardening  
M < 1) which is currently restricted to 0.5.  

ng 
eference: 

ref K.J. Bathe and F.J. Montáns, “On Modeling Mixed 
Hardening in Computational Plasticity”, Comput
Structures, Vol. 82, No. 6, pp. 535–539, 2004. 

 
The yield stress is a function of the effective plastic strain, 

strain is defined as 
 

 

the plastic 

(0 < 
The formulation for the von Mises model with mixed hardeni

is given in the following r
 

ers and 

which defines the hardening of the material. The effective plastic 

0

2
3

t
P p p∫t e d d= ⋅e e  

 
 which  is the tensor of differential plastic strain increments 

and in which 
 pde

p pd d⋅e e is calculated as  (see ref. KJB, p. p p
ij ijde

in
de

P
599). In finite element analysis, t e  is approximated as the sum of 
all of the plastic strain increments up to the current solution time:  

 

 
Pt p

all s

e
olution steps

= ∆∑

where 

e  

 
2
3

P p pe∆ = ∆ ⋅ ∆e e and p∆e  is the tensor of 

solution steps, the calculated value of 

plastic strain 

increments in a solution step. Because of the summation over the 
Pt e  is referred to as the 

accumulated effective plastic strain. 
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• If a thermal load is applied to the structure, the thermal strains 
are taken into account but the material characteristics are 
considered to be temperature independent. 
 
• The material behavior beyond the last point of the stress-strain 

 considered ruptured, or the 
cur

 
strain curve. The rupture plastic strain 

corresponds to the effective plastic strain at the last point input for 
the stress-strain curve. No rupture strain exists for the bilinear case. 

When rupture is reached at a given element integration point, 
the corresponding element is removed from the model (see Section 
10.5). 

3.5  Temp

 
MA
 The th
elements w AT8 
and MATT8 material entries; for axisymmetric 2-D elements with 
MAT3 and MATT3 material entries; and for solid elements with 
the MAT9 and MATT9 material entries, or MAT11 and MATT11 
material entries.  
 These commands allow the different elastic material constants 
to vary with temperature. Thermal strains are taken into account in 
these materials. 
 

s available for the rod, 2-D solid, 

curve in multilinear plasticity can be
ve can be extended indefinitely with the slope of its final 

segment. This depends on a global setting of the XTCURVE 
parameter in NXSTRAT with indefinite extension as the default. 
 
Modeling of rupture: Rupture conditions can also be modeled for
the multilinear stress-

erature-dependent elastic material models 

• The thermal isotropic and thermal orthotropic material models 
are discussed in this section.  

The thermal isotropic material is obtained with the MAT1 and 
TT1 material entries.  

ermal orthotropic material is obtained for surface 
ith the MAT2 and MATT2 material entries, or M

• The thermal isotropic model i
3-D solid and shell elements. 
 
• The thermal orthotropic model is available for the 2-D solid, 
3-D solid and shell elements. 
 
 



 3.5:  Temperature-dependent elastic material models 
 

 
 
Advanced Nonlinear Solution ⎯ Theory and Modeling Guide 125 

small strain 
and large displacement/small strain kinematics. The strains are 

 small displacement/small strain kinematics, a 
materially-nonlinear-only formulation is employed. 

 

 In the data input for the analysis, the nodal point temperatures 

 For these models, the elastic moduli, the shear moduli, the 
efined 

n Fig. 3.5-1. Linear interpolation is used 
 calculate the material properties between input points. 

• Both models can be used with small displacement/

always assumed to be small. 
When used with

When used with large displacement/small strain kinematics,
either the TL or UL formulation is employed. 2-D, 3-D solids and 
shells use the TL formulations, and rods use a UL formulation. 
 
•
must be defined for all time steps. See Section 5.6. 
 
•
Poisson's ratios and the coefficients of thermal expansion d
in Section 3.2 are input as piecewise linear functions of the 
temperature, as illustrated i
to
 
 
 
 
 

E 	
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t t
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Temperature
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�

t�

�
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Figure 3.5-1: Variation of material
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The calculation of thermal strains is described in Section 3.1.6. 

 Note that if the material constants are all temperature 
terial is isotropic, then thermal strains 
 been modeled using the elastic isotropic 

aterial (non-thermal) of Section 3.2. 

3.6  Therm l  c

aterial types. The computational procedure is based on the 
e stress function algorithm, detailed in Section 3.6.4. 

 
mal elasto-plastic and creep models include the effects 

 
 

 

1 entries. 

f Time-independent plastic strains, e , via the MATS1 entry 

 

 
 The constitutive relation used is 

 
 

• 
 
•
independent, and the ma
ould alternatively havec

m
 

al elasto-p astic and reep material models 

• This section groups together thermal elasto-plastic materials and 
reep materials, since a unified general solution can be applied to c

these m
effectiv

• The ther
f o

f Isotropic elastic strains, via the MAT1 entry

f Thermal strains, t TH
rse , via the MATT1 or the MAT

 
t p

rs
 

f Time-dependent creep strains, t C
rse , via the CREEP entry, or

the CREEP and MATTC entries. 

•

 

ref. KJB
Section 6.6.3
Advanced Nonlinear Solution ⎯ Theory and Modeling Guide 

( )t t E t t P t C t TH
ij ijrs rs rs rs rsC e e e eσ = − − −  (3.6-1) 

where t
ijσ  is the stress tensor at time t and  is the elasticity 

tensor at the temperature corresponding to tim . The tensor 
can be expressed in terms of Young's modulus tE and Poisson's 

• Note that the thermal, plastic and creep parts of these material 
models are optional. If, however, the omitted strain components 
result in one of the material models detailed in one of the previous 

t E
ijrsC

e t t E
ijrsC  

ratio tv both of which may be temperature-dependent. 
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sections, then the program will select that material model. 
 
• The formulations provided in this section are very general, and 
an describe any material combining elastic, plastic, thermal and 

ns given in Table 3.6-1 are allowed. 
  

, 3-D 

ent/small 
strain, large displacement/small strain and large displacement/ 
large strain kinematics. 

When used with small displacement/small strain kinematics, a 
materially-nonlinear-only formulation is employed. 

When used with large displacement/small strain kinematics, 
either a TL or a UL formulation is employed (TL for 2-D and 3-D 

When used with large displacement/large strain kinematics, the 
s 

 

c
creep strains. The combinatio

• These material models can be used with the rod, 2-D solid
solid, and shell elements. 
 
• These models can be used with small displacem

solids and shells, and UL for rods). 

ULH (updated Lagrangian Hencky) formulation is employed. Thi
is only supported for 2-D solid and 3-D solid elements. 

• Plane strain, axisymmetric or 3-D solid elements that reference 
these material models should preferably employ the mixed u/p 
element formulation. This is done by setting UPFORM =1 in the 
NXSTRAT entry.  
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Description Elastic 
 

Plastic Creep Bulk data entries 
Elastic 
creep 

Yes No Yes MAT1, CREEP 

Thermal 
elastic 
creep 

Yes No Temp-
dep 

MAT1, CREEP, MATTC 

Yes A ith TID in MATS1 pointing to  Yes No  MAT1, M TS1, w
a TABLES1 entry 

Tem
dep 

with TID in MATS1 
pointing to a TABLES1 entry 

p- Yes No MAT1, MATT1, MATS1, 

Yes Temp-
dep 

No MAT1, MATS1, wi h TID in MATS1 pointing to 
a TABELST entry 

t

Thermal 
elasto-
plastic 
 

Temp-
dep 

Temp- No MAT1, MATT1, MATS1, with TID in MATS1 
dep pointing to a TABELST entry 

Yes   Yes Yes MAT1, MATS1, CREEP, with TID in MATS1
pointing to a TABLES1 entry 

Plastic-
creep 

Tem
dep 

D in p- Yes Yes MAT1, MATT1, MATS1, CREEP, with TI
MATS1 pointing to a TABLES1 entry 

Yes Temp-
ep 

Yes MAT1, MATS1, CREEP, with TID in MATS1 
pointing to a TAB ry d LEST ent

Tem
dep 

p-
dep 

Yes MAT1, MATT1, MATS1, CREEP, with TID in 
MATS1 pointing to a TABLEST entry 

p- Tem

Yes Yes Temp-
dep 

MAT1, MATS1, CREEP, MATTC, with TID in 
MATS1 pointing to a TABLES1 entry 

Tem
dep 

p- Yes Temp-
dep 

MAT1, MATT1, MATS1, CREEP, MATTC, 
with TID in MATS1 pointing to a TABLES1 
entry 

Yes Tem
p  

p- Temp- MAT1, MATS1, CREEP, MATTC, with TID in 
de dep MATS1 pointing to a TABLEST entry

Thermal 
plastic-
creep 

Temp-
dep 

m
dep 
Te p- Temp-

dep 
MAT1, MATT1, MATS1, CREEP, MATTC, 
with TID in MATS1 pointing to a TABLEST 
entry 

 
Notes: 

 
. "No" means that this strain is not included in the material. "Yes" means that this strain is 

included in the mat
temperature-indepe
description, and tha

Table

1
erial description, and that the material constants for this strain are 
ndent. "Temp-dep" means that this strain is included in the material 
t the material constants for this strain are temperature-dependent. 
 
 
 3.6-1: Combinations of elastic, plastic and creep strains 
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creep strains are independent of each other; hence the only 
interaction between the strains comes from the fact that all strains 
affect the stresses according to Eq. 3
constitutive description for a one-dimensional stress situation and a 
bilinear stress-strain curve. 
 

• Note that the constitutive relations for the thermal, plastic and

.6-1. Fig. 3.6-1 summarizes the 

Area A

� �

tPTemperature t�

(a) Model problem of rod element under constant load

Stress

t�

t
T

tE ( )�

t tE( )�

t
yv� ( )t�

t Pe (time independent)

t Ee (time independent)

Strain

Creep

strain
t Ce (time dependent)

t Time

(b) Strains considered in the model

Figure 3.6-1: Thermo-elasto-plasticity and creep constitutive

description in one-dimensional analysis  



Chapter 3: Material models and formulations 
 

 
 
130 Advanced Nonlinear Solution ⎯ Theory and Modeling Guide 

•  multilinear plasticity, the rupture plastic strain corresponds to 
strain at the last point input for the stress-strain 

r

oint, 
ding element is removed from the model (see Section 

0.5). 
 

ref. M.D. Snyder and K.J. Bathe, "A Solution Procedure for 
Thermo-Elastic-Plastic and Creep Problems," J. Nuclear 
Eng. and Design, Vol. 64, pp. 49-80, 1981. 

ref. M. Kojić and K.J. Bathe, "The Effective-Stress-Function 
p," Int. 

h. ngn -1532, 

3.6.1  Eval
 

rmal strains are calculated as described in Section 3.1.6.  
 

3.6.2  Eval
 
• Plasticity effects are included in the thermal elasto-plastic 

 on the vo s yield criterion, an 
ening (no mixed 

hardening), and bilinear or multilinear stress-strain curves (based 
on the H and TID fields in MATS1). 
 
• In the case of bilinear plasticity only the elastic material 

s case, the 
ting 

Since there is no direct coupling in the evaluation of the 
different strain components, we can discuss the calculation of each 
strain component independently. 

 
In

the effective plastic 
cu ve. 

 
• When rupture is reached at a given element integration p
the correspon
1

 

Algorithm for Thermo-Elasto-Plasticity and Cree
J. Numer. Met  E g., Vol. 24, No. 8, pp. 1509
1987. 

 
uation of thermal strains 

• The the

uation of plastic strains 

material model and is based n Mise
associated flow rule, isotropic or kinematic hard

parameters can be temperature dependent (Young’s modulus, 
Poisson’s ratio and coefficient of thermal expansion). 
 
 • The multilinear plasticity case is more general. In thi

stress-strain curves can be made temperature dependent by set
TID in MATS1 to point to a TABLEST entry instead of a 
TABLES1 entry. The elastic material parameters can also be 
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tem erature dependent. The yield curves are interpolated as shown p
in Fig. 3.6-2. 
 

a) Stress-strain curves input data

b) Yield curves
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2

2

3

3 4

e
i
1 e

i
2 e

i
3 e

i
4 Strain

i+1
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�i

�

e e e ei+1 i+1 i+1 i+1
2
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ee
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i+1 i+1
P P2 3
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yield curve
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� i3
4

1

1 2
3
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�i+1

Figur  e 3.6-2: Interpolation of multilinear yield curves with temperature
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 The plastic strains are calculated using the von Mises plasticity 

 (Young's modulus, Poisson's ratio, stress-strain curves).  

• yie
 

 

•
model (see Section 3.4) with temperature-dependent material 
parameters
 

The ld function is in isotropic hardening 

21 1
2 3

t t t t
yf vyσ= ⋅ −s s  

 

 

 

and in kinematic hardening 

( ) ( ) 2
v

1 1
2 3

t t t t t t
y yf σ= − ⋅ − −s α s α  

here ts  is the deviatoric 
 

stress tensor, v
t

yσw  is the virgin yield 

an the 
o ue to kinematic hardening. 

  
tic str rements resulting from the 

stress corresponding to temperature tθ d tα  is the shift of 
stress tens r d

• The expressions for plas ain inc
flow theory are P t

ij ijde d sλ=  for isotropic hardening and 

( )t
ij

P t
ij ijde d sλ α= −  for kinematic hardening, in which dλ is the 

plastic multiplier (positive scalar) which can be determined from 
the yield condition tfy = 0. In the case of kinematic hardening, we 
express the change of the yield surface position in the form 

 
 P  

 
C is the modulus 

      

t
ijd Cdeα = ij

where t

 

2
3

t t
t T

t t
T

E EC
E E

=
−
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ET as a function of temperature is large. Hence, it is 

recommended to use this model only when the variation in ET as a 
s small. 

3.6.3  Eval t
 

 currently available in Solution 601. The first 
called the Power creep law is obtained by setting TYPE = 300 in 
the CREEP material entry. The second creep law called the 
Exponential creep law is obtained by setting TYPE = 222 in the 
CREEP material entry. The Power creep law is currently supported 
for the elastic-creep, thermal elastic-creep, plastic-creep and 

e Exponential creep la
he elastic-creep and plastic-creep 

 

 

• Care should be exercised in the use of this model in kinematic 
hardening conditions. Namely, nonphysical effects can result when
the variation in 

function of temperature i
 
ua ion of creep strains 

• Two creep laws are

thermal plastic-creep material models. Th w 
is currently supported only for t

aterial models. m
 
• The effective creep strain is calculated as follows: 

Power creep law (creep law 1) : 
 

t C t b de a tσ= ⋅ ⋅  
 
in which σ is the effective stress, t is the time, and a, b, d are 
material constants from the CREEP material entry. These three 

Exponential creep law (creep law 2) : 

 

constants can be set to be temperature dependent via the 
MATTC entry. 
 

 

( ) ( )( ) ( )1 R tt Ce F e G− σ ⋅ t= σ ⋅ − + σ ⋅  

with
 

 

 ( ) ( ) ( ) ( ) ( ) ( ); ;
t tdb tF a e R c G e e f⋅ σ ⋅σ = ⋅ σ = ⋅ σ σ = ⋅  σ

 

 
in which a through f are material constants from the CREEP 
material entry. 
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 The creep strains are evaluated using the strain hardening  
procedure for load and temperature variations, and the O.R.N.L. 

r cyclic loading conditions. 
 

ref. C.E. Pugh, J.M. Corum, K.C. Liu and W.L. Greenstreet, 
"Currently Recommended Constitutive Equations for 
Inelastic Design of FFTF Components," Report No. TM-
3602, Oak Ridge National Laboratory, Oak Ridge, 
Tennessee, 1972. 

 

 and 

 

 

 

•

rules fo

The procedure used to evaluate the incremental creep strains is 
summarized in the following: Given the total creep strains t C

ije

the deviatoric stresses t t
ijs+∆ , 

1) Calculate the effective stress 

1
23

2
t t t t t t

ij ijs sσ+∆ +∆ +∆⎡ ⎤= ⎢ ⎥⎣ ⎦
 

 
2) Calculate the pseudo-effective creep strain 

 

( )( )
1
22

3
t C t C orig t C orig

ij ij ij ije e e e e⎡ ⎤= − −⎢ ⎥⎣ ⎦
 

3a)  For power creep with temperature-independent material 
constants, calculate the effective creep strain and effective creep 
strain rate at time 

 

 

t t+ ∆ using  
 

( ) ( ) ( ) 22 2
1

0
at t C t C t te e a tσ+∆ +∆ 1/1/ 1/ aa a

= + ∆  

 
t t t C

t t C e ee
t

+∆
+∆ −

=
∆

 
C

 
3b) For other creep laws (including power creep with 
temperature dependent constants), calculate the pseudo-time t  
satisfying  
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( ) ( )C t t t t t C C t t t te t e e t tσ θ σ θ+∆ +∆ +∆ +∆, , = + , , ∆  

 
where ( )C t t t te tσ θ+∆ +∆, ,  is the generalized uniaxial creep law 

and ( ) ( )C t t t td e tσ θ+∆ +∆
C t t t te tσ θ

d t
+∆ +∆

, ,
, , = . Then calculate 

the effective creep strain and effective creep strain rate at time 
t t+ ∆  using  
 

( )t t C C t t+∆ +∆ t te e tσ θ+∆= , , ,  ( )t t C C t t t te e tσ θ+∆ +∆ +∆= , , . 

 
4) Calculate t tγ+∆  using 

 

 
t t Ce+∆3t tγ+∆ =

 

 
 

t tσ+∆2
 

5) Calculate the incremental creep strains using  

C t t t t
ij ije t sγ∆ = ∆  

The use of the pseudo-time in step 3b corresponds to a strain 
hardening procedure. See ref. KJB, pp 607-608 for a discussion of 
strain hardening for calculation of creep

+∆ +∆

 

 strains. 
 

3.6.4  Com
 

ints are evaluated 

 

-1532, 

 
riefly, the procedure used consists of the following calculations. 

ref. KJB
Section 6.6.

putational procedures 

• The stresses and strains at the integration po
using the effective-stress-function algorithm. 

ref. M. Kojić and K.J. Bathe, "The Effective-Stress-Function 
Algorithm for Thermo-Elasto-Plasticity and Creep," Int. 
J. Numer. Meth. Engng., Vol. 24, No. 8, pp. 1509
1987. 

B
The general constitutive equation  

3

ced Nonl
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 ( )( ) ( ) ( ) ( )t t i t t E t t i t t P i t t C i t t THσ+∆ +∆ +∆ +∆ +∆ +∆= − − −C e e e e  (3.6-1) 

 
ean stress and for the deviatoric 

dex will be dropped in the discussion to follow. The mean stress 
 calculated as 

 

is solved separately for the m
stresses. In this equation the index (i) denotes the iteration counter 
n the iteration for nodal point equilibrium. For easier writing this i

in
is
 

( )1 2

t t
t t t t t t TH

m mt t

E e eσ
+∆

+∆ +∆ +∆
+∆= −

− ν
 (3.6-2) 

 
The deviatoric stresses t t+∆ s  depend on the inelasti sc strain  and 
they can be expressed as 

 

 
1t t t t

t t
Ea t τα γ λ

+∆ +∆
+∆

′′⎡ ( )1 tt τα γ ⎤= − − ∆  ⎣ ⎦s  (3.6-3) 
+ ∆ + ∆

s e

where 

 

1

t t
t t

E t t

Ea
+∆

+∆
+∆=

+ ν
, ts  = deviatoric stress at the start of the 

e step and α is the integration parameter used for stress tim
evaluation ( )0 1α≤ < . The creep and plastic multipliers τγ  and 

λ∆ are functions of the effective stress t tσ+∆  only, and they 
ccount for creep and plasticity

 
 

a ; also 

t t t t t P t C+∆ +∆′′ ′= − −e e e  e

is known sin the dev
 

ce iatoric strains t t+∆ ′e , plastic strains t Pe  and 
reep strains t Ce  are known from the current displacements and c

the stress/strain state at the start of the current time step. 
lowing scalar function The fol ( )t tf σ+∆  is obtained from Eq. 

(3.6-3) 
 
 ( ) 2 2 0t t t tf a b c dτ τσ σ γ γ+∆ +∆ 2 2 2= + − − =  (3.6-4) 
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The zero of Eq. (3.6-4) provides the solution for the effective stress 
t tσ+∆ , where  

 
t t

Ea a t τα γ λ+∆= + ∆ + ∆  
 ( )3 1 t t t

ij ijb tα +∆ e s′= − ∆  

( )1 tc tα σ= − ∆   

2 3
 

2 ij ijd e et t t t+∆ +∆′′ ′′=  

with s ation
On e sol

 
umm  on the indices i, j. 
ce th ution for  has been determined from Eq. (3.6-4), 

ultaneously with the scalars τγ  and λ∆sim  from the creep and 
lasticity conditions, the deviatoric stress  is calculated from 
q. (3.6-3), and the plastic and creep strains at the end of the time 

re obtained as  
 

 

t t+∆ sp  
E
step a

(1

t t P t P t t

t t C t C t t t t τ

λ

α α γ

+∆ +∆

+∆ +∆

= + ∆

⎡ ⎤= + − ) + ∆⎣ ⎦

e e s

e e s s
 

 

d shell elements) are given in the above cited 
ferences, and also in the following reference: 

 

 
ctures, Vol. 26, No 1/2, pp. 135-143, 1987. 

 

 

 
 
 

The above equations correspond to isotropic hardening 
conditions and a general 3-D analysis. The solution details for 
kinematic hardening conditions and for special problems (for the 
plane stress an
re

ref. M. Kojić and K.J. Bathe, "Thermo-Elastic-Plastic and 
Creep Analysis of Shell Structures", Computers &
Stru
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3.7  Hyperelastic material models 

The hyperelastic material models available in Advanced 
onlinear Solution are the Mooney-Rivlin, Ogden, Arruda-Boyce, 

-Bath material models. They are all 
E com and. In addition MATHP can be 

a
 

e 2-D solid and 3-
 solid elements. 

 
el uses

ed. The 
e  

• Viscoelastic effects and Mullins effects can be included using 
e MATHEV and MATHEM entries. 

xpansion coefficient. Section 3.7.6 shows how they are computed 

• In Solution 701 only the Mooney-Rivlin and Ogden material 

• The isotropic hyperelastic effects are mathematically described 
y specifying the dependence of the strain energy density (per unit 
rigi l volume)  on the Green-Lagrange strain tensor 

• 
N
Hyperfoam, and Sussman e 

efined using the MATH md
used to define a hyperelastic Mooney-Rivlin m terial. 

• This material model can be employed with th
D

• This material mod  large displacement/large strain 
kinematics. A Total Lagrangian (TL) formulation is employ
same formulation is used if a large displacem nt/small strain
kinematics is selected. 
 

th
 
• Thermal strains can be included via a constant thermal 
e
for hyperelastic materials. 
 

models can be used, and only for 3-D solid elements. 
 

b
W ijεo na . 

 
 We now give a brief summary of the quantities and concepts 

.6.2  

, 
iven by 

•
used. For more information, refer to ref KJB, section 6 . Here
and below, we omit the usual left superscripts and subscripts for 
ease of writing. Unless otherwise stated, all quantities are evaluated 
at time t  and referred to reference time 0 . 
 
• Useful quantities are the Cauchy-Green deformation tensor Cij

g
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2ij ij ijC ε δ= +   
 
where ijδ  is the Kronecker delta; the principal invaria f the

auchy-Green deformation tensor,  
nts o  

C
 

 1 kkI C= ,    ( )2
2 1

1
2 ij ijI I C C= − ,    3 detI = C  

 
uced invariants: the red

 
1
31 1 3I I I −= , 

2
32 2 3 I I I −= , 

1
23J I= ,  

 
e stretches iλth  where the iλ ’s are the square roots of the principal 

stretches of the Cauchy-Green deformation tensor; and the reduced 
stretches:  
 

  ( )
1
3

i i 1 2 3λ λ λ λ λ −=   
 
Note that  
 

 1 2 3J λ λ λ=   
 
is the volume ratio (ratio of the de ed volume to the

eformed volume). 
form  

nd

• The strain energy density is written in 
variants or stretches. In many cases, the strain energy density is 

u
 

 W  terms of the 
in
conveniently written as the sum of the deviatoric strain energy 
density DW  and the volumetric strain energy density .  

• With knowledge of how the strain energy density  depends 
on the Green-Lagrange strain tensor (through the invariants or 
stretches), the 2nd Piola-Kirchhoff stress tensor is evaluated using 

 VW
 

 W
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1
2ij

W WS
⎛ ⎞

ij ji

∂ ∂
= +⎜ ⎟⎜ ⎟∂ε ∂ε

 
⎝ ⎠

 

 

 

and the incremental material tensor is evaluated using 

1 ij ijS S∂ ∂⎛ ⎞
2ijrs

rs sr
⎜ ⎟C = +

∂ε ∂ε⎝ ⎠
 
ney-Rivlin material model 
 

 

3.7.1  Moo

 
e 

e 
 energy density: 

 

(
( )

2
10 01 2 20 1 11

02

3
12 1 2 03 2

3

3

DW C C I C I C

C I

C I

= − + − + − +

−
 (3.7-1) 

• The Mooney-Rivlin material model is obtained by setting 
Model=Mooney in the MATHE material entry. It can also b
obtained using the MATHP material entry. It is based on th
following expression of the strain

( ) )( )1 1 23 3 3 3I I I− − +( ) ( ) (
) ( ) ( ) ( )
)( ) (

2 3 2
2 30 1 21 1 2

2

3 3 3 3

3 3

C I C I I

I C I

− + − + − − +

− − +

 

 
where Cij are material constants , and 1I  and 2I  are the first and 
second strain invariants at time t, referring to the original 
configuration (see ref. KJB, Section 6.6.2 for the definitions of the
strain invariants). 

Note that constants A  used in the M

 

ij ATHP material entry are 
d in MATHE and in the equation 

 

 
identical to Cij constants use
bove. a

• This strain energy density expression assumes a totally 
incompressible material ( )3 1 .I =   It is modified as explained 
below for plane strain, axisymmetric or 3-D analysis. 
 
Plane stress analysis  In plane stress analysis, the material is 
assumed to be totally incompressible. Therefore VW  is zero and 

DW W= . A displacement-based finite element formulation is used, 

ref. KJB
Section 6.6.2
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lane strain, axisymmetric and 3-D analysis: In plane strain, 

ble (that is, the bulk modulus is not infinite), but the bulk 
odulus can be set high so that the material is “almost 

 ey-Rivlin strain energy density equation is modified 

 

in which the incompressibility condition of the material is imposed 
by calculating the appropriate thickness of the material. 

P
axisymmetric and 3-D analysis, the material is modeled as 
compressi
m
incompressible”.  

The Moon
by: 

1) substituting for the invariants 1 2,I I  the reduced invariants 

1 2,I I , 
2) removing the condition 3 1I = , and  
3) adding the volumetric strain energy density 

 

 ( )21 1
2VW Jκ= −  

 
here κ is the bulk modulus given by K in the MATHE material w

entry (or two times D1 in the MATHP material entry). This 
expression for the volumetric strain energy density yields the 
following relationship between the pressure and the volume ratio: 
 
  ( )1p Jκ= − −  

 The mixed u/p formulation pressure formulation (u/p) is always 
used for these elements, to avoid volumetric locking. The material 
stress-strain descriptions are obtained by differentiatio

btain stresses du

 

n of  to 
e to the element displacements and then taking 

 

 
 
 

ref. KJB
Section 6.6.2

 W
o
into account the effect of the separately interpolated pressure. 

ref. T. Sussman and K.J. Bathe, "A Finite Element 
Formulation for Nonlinear Incompressible Elastic and 
Inelastic Analysis," J. Computers and Structures, Vol. 
26, No. 1/2, pp. 357-409, 1987. 
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rial 
κ. 

ed a higher-order or 
eneralized Mooney-Rivlin material law. Choosing only C10 ≠ 0 

all strain Young’s 
uming 

Selection of material constants: The Mooney-Rivlin mate
description used here has 9 Cij constants and the bulk modulus 
Strictly speaking, this material law is term
g
yields the neo-Hookean material law, and choosing only C10 ≠ 0, 
C01 ≠ 0 yields the standard two-term Mooney-Rivlin material law.  

The small strain shear modulus and sm
modulus can be written in terms of these constants as (ass
κ = ∞ ) 

 
( )10 012G C C= +  (3.7-5) 

 ( )10 016E C C= +  (3.7

These moduli must be greater than zero. 

-6) 
 

 bulk modulus κ is used to model the compressibility of the 
mmetric and 3-D analysis. 

 
ed on 

 

 

 
• The

aterial for plane strain, axisym

• Solution 601 assumes a default for the bulk modulus bas
small strain near-incompressibility, i.e., 

( )
   with 

3 1 2ν
Eκ ν= = 0.499  (3.7-7) 

 
s

 

 

−

where E is the small strain Young's modulus or, in term  of the 
small strain shear modulus G, 

( )
( )

2 1
500     for 

3 1 2ν
G

G
ν

κ ν
+

= = = 0.499  

 
le of thumb can be used to estim e the bulk modulus in the 
e of experimental data. However, lower values of the bulk 

ials. 
 

tion 701 assumes the same bulk modulus based on small 
ear-incompressibility. However, this can significantly 

se a bulk 

−

This ru at
bsenca

modulus can be used to model compressible mater

• Solu
train ns

reduce the stable time step. In such cases, is better to u
odulus that results in ν=0.49. m
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en automatic time step calculation is used for a Mooney-
material in Solution 701, the critical time step is governed 

y an 
pressible. 

 
• s the material deforms, the bulk to shear modulus ratio may 
hange, because the instantaneous shear modulus is dependent on 

us that 
corresponds  not be 

ge 

3.7.2  Ogd  

Ogden 

 

• Wh
ivlin R

by the dilatational wave speed. This is most frequentl
cceptable assumption since the material is almost incoma

A
c
the amount of deformation. A value of the bulk modul

to near incompressibility for small strains may
large enough to correspond to near incompressibility for lar
strains.  

 
en material model 
 

• The Ogden material model is obtained by setting Model=
in the MATHE material entry. It is based on the following 
expression: 
 

9

1 2 3 3n n nn
DW α α αµ λ λ λ

α
⎛ ⎞

1n n=

⎡ ⎤= + + −⎜ ⎟⎣ ⎦∑  
⎝ ⎠

 
where nµ and nα  are Ogden material constants. 
 
• This strain energy density expression assumes a totally 

compressible material ( )3 1I = .in  As in the Mooney Rivlin 
material, the strain energy density expression of the Ogden material 
is used unmodified for plane stress analysis, and is modified for 
plane strain, axisymmetric and 3-D analysis. The modification is 

ade by: 

-

m
 
1) substituting for the stretches , ,1 2 3λ λ λ  the reduced stretches 

1 2 3, ,λ λ λ , 
12) removing the condition 1 2 3λ λ λ = , and 

 

 

3) adding the volumetric strain energy density 

( ) ( )2 21 11 1W Jκ λ λ λ κ
2 2V 1 2 3= − = −  

 

ref. KJB
Section 6.6.2
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where κ is the bulk modulus. The relationship between the pressure 
and vo n 
material. 
 The u/
axisymme comments about the u/p 

rmulation, see the corresponding comments in the Mooney-
Rivlin mat

 
Selection terial description 
used here has 19 constants: n

 the lumetric ratio is the same as for the Mooney-Rivli

p formulation is always used for plane strain, 
tric and 3-D elements. For 

fo
erial description. 

of material constants: The Ogden ma
, ,  1,...,9n nµ α =  and the bulk 

mo . dulus Choosing only , 0,  1, 2,3n n nµ α ≠ =  the standard t
n material description is recovered. 
all strain shear modulus and 

hree-
term Ogde

The sm small strain Young’s 
modulus can be written as (assuming κ = ∞ ) 

 

 
91G

12 n n
n

µ α= ∑
=

 

 

 
9

1

3
2 n n

n

E µ α
=

= ∑  

These modu
 

li must be greater than zero. 
 
• en 
ma rial in Solution 701, the critical time step is governed by the 
dil e s  

 
3.7.3  Arruda-Boyce material model 

 

• he Arruda-Boyce model is obtaine
BOYCE in the MATHE material entry. It is based on the 
llowing expression: 

 

When automatic time step calculation is used for an Ogd
te
atational wav peed. This is most frequently an acceptable

assumption since the material is almost incompressible. 
 
• For comments about the bulk modulus, see the corresponding 
comments about the bulk modulus in the Mooney-Rivlin material 
description. 

T d by setting MODEL = 
A
fo
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( ) ( ) ( )

( ) ( )

2 3
1 1 1

1 1[ 3 9 27
2 20 10

1 5191 243 ]

D KTW N I I
N

= − + − + −

+ − + −

2

4 5
1 13 4

11
50

9 8
7000 673750

I
N

I I
N N

  

 
where NKT is a material constant and N is 
representing the number of statistical links of the m
 

rruda-Boyce material model is described in the following 
reference: 
 

f. E. M. Arruda and M. C. Boyce, “A th
constitutive model for the large stretch behavior of 
rubber elastic materials”, J. Mech. Phys. Solids, Vol,. 41 

93).  
 
•  density expression assumes a totally
incompressible material 

a material parameter 
aterial chain. 

• The A

re ree-dimensional 

(2), pp 389-412 (19

This strain energy  ref. KJB
Section 6.6.2 ( )3 1 .I =  As in the Mooney

ma rial, the strain energy density expression of the Arruda-Boyce 
 stress analysis, and is 

modified for plane strain, axisymmetric and 3-D analysis. The 
modification is made by: 
 

g for the strain invariant

-Rivlin 
te

material is used unmodified for plane

1) substitutin  1I  the reduced strain 
inv 1I , ariant 

3 1I =2) removing the condition , and 
3) adding the volumetric energy term  

 

 
( )2 1

ln
2V 2

J
W Jκ ⎡ ⎤−

⎢ ⎥= −
⎢ ⎥⎣ ⎦

where κ is the small-strain bulk modulus. The rela et

 

 
tionship b ween 

the pressure and the volume ratio is 

  

 
1

2
p J

J
κ ⎛ ⎞

= −⎜ ⎟
⎝ ⎠
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The u/p formulation is always used for plane
and 3-D elements. For comments about the u/p form
corresponding comments in the Mooney-Rivlin material 
description. 

• When plane strain, axisymmetric or 3-D elements are used, 
 should be at least one  

her ore equilibrium iteration
 the displacements in the m

 
3.7.4  Hyperfoam material model 

 
• perfoam material model is obtained by setting 

. It is based on the 

 

 

 strain, axisymmetric 
ulation, see the 

 

there solution unknown. This is because the
constraint equation used in the u/p formulation is nonlinear in the 
unknown pressures. T ef s are required 
for convergence, even when all of odel 
are prescribed. 

The Hy
Model=Foam in the MATHE material entry
following expression: 

( )1 2 3
1n

−

=

13 1n n n n n

N
n

n n

W Jα α α α βµ λ λ λ
α β

⎡ ⎤
= + + − + −⎢ ⎥

⎣ ⎦
∑  

 
in which there are the material constants , , , 1,...,n n n n Nµ α β = . 
The maximum value of N is 9. 
 
•  material model similar to the hyp
described in the following reference: 
 

B. S
”, 

1  

In this reference, 

A er-foam material model is 

ref. toråkers, “On material representation and 
constitutive branching in finite compressible elasticity
J. Mech. Phys. Solids, Vol,. 34(2), pp 25-145 (1986). 

 
nβ  is the same for all values of n. 

 
• The strain energy density can be split into deviatoric and 
volumetric parts 
 

  /3
1 2 3 3

1

3n n n n

N
n

D
n n

W Jα α α αµ λ λ λ
α=

⎡ ⎤= + + −⎣ ⎦∑  
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  ( ) ( )/ 3
3

13 1 1n n n

N
n

V
n n

Jα α β

β
−

=
3

1 n

W Jµ
α

⎡ ⎤
= − + −⎢ ⎥

⎣ ⎦
∑  

 
Notice that D VW W W= + . This decomposition of the strain energy 
density has the advantage that the stresses obtained from the 
deviatoric and volu  are zero when there 
no deformations: 
 

  

metric parts separately are 

0
0

2ij

ij

ij
ij ji

ε =
ε =

1 W W⎛ ⎞
0D D DS ∂ ∂

= + =⎜ ⎟ , 

 

⎜ ⎟∂ε ∂ε⎝ ⎠

0

1 0
2ij

V V V
ij

W WS
ε =

0ij
ij ji ε =

⎛ ⎞∂ ∂
= + = ⎜ ⎟⎜ ⎟

⎝ ⎠
 
Notice that 

∂ε ∂ε
 

DW  contains the volumetric p
the term . Therefore 

art of the motion through 
 /3

33 nJ α
DW  is not entirely deviatoric. 

not assum
oth

 
• The material is ed to be totally incompressible. 
Because b  DW  and  contain the volumetric part of the 
mo ixed u/p formulation cannot be used with the hyper-
foam material. A displacement-based formulatio
 
Selection of material constants: The hyper-foam material 

VW
tion, the m

n is used. 

description used here has 27 constants: , , ,  n n n n 1,...,9µ α β = .  
he small strain shear modulus and small strain bulk modulus 

can be written as  
 

 

T

9

1

1
2 n n

n
G µ α

=

= ∑  

 

 
9

1

1
3n n n

n
κ β µ α

=

⎛ ⎞= +∑
 
 

⎜ ⎟
⎝ ⎠
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oduli must be greater than zero, hence we note that nβ  These m
should be greater than –1/3.  
 When all of the nβ  are equal to each other β= , then the 

βPoisson’s ratio is related to  using 

 

 

1 2
νβ

ν
=  

m material model is generally used for highly 
compressible elastomers.  
  the ratio of the bulk modulus to shear mo
(greater than about 10), the material is almost incompressible and 

mmend that one of the other hyperelastic materials be used. 

3.7.5  Sussman-Bathe material model 
 
• he Sussman-Bathe model is obtained by setting MODEL = 

 
 3

−
 
• The hyper-foa

If dulus is high 

we reco
 

T
SUSSBAT in the MATHE material entry. It is based on the 
following equation: 

1 2( ) ( ) ( )DW w e w e w e= + +  (3.7-8) 
 
where w(e) is a function of the principal logarithm
strain) and e1, e2, and e3 are the principal logarithmic strains. 

goa

tail 

 
Of course, when uniaxial tension/compression data is known, a 
curve fitting approach can, in theory, be used to determ
constants for the other hyperelastic models, e.g. th
model. But this curve fitting in practice does not provide good fits 
to the data under many circumstances. 

 
plane s isymme

ic strain (Hencky 

 
• The primary l of the model is to fit given uniaxial 
tension/compression data very well. This goal is accomplished by 
using a spline to fit the derivative of w(e), as described in de
below. 

ine the 
e Ogden material 

 
• This strain energy density expression assumes a totally 
incompressible material (I3 = 1) and is modified as explained below
for train, ax tric or 3-D analysis. 
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ference 

ressible 

ata”, 
sue 1, pp. 53-

al is totally 

i corresponding to the principal strain ei is 
 

 

• The Sussman-Bathe model is given in the following re
 

ref. T. Sussman and K.J. Bathe, “A model of incomp
isotropic hyperelastic material behavior using spline 
interpolations of tension-compression test d
Commun. Numer. Meth. Engng, Vol. 25, Is
63, January 2009.  

 
• The following gives a quick summary of the Sussman-Bathe 
model. In this summary, we assume that the materi
incompressible. Differences due to slight compressibility are small. 
 
Theoretical background: 
 
1) The Cauchy stress τ 

( )D
i i

W p w e pτ
ie

∂ ′= + = +  (3.7-9) 

 
where iw e

∂

/dw de( )′ ≡ . 
 
2) In uniaxial co urtension/ mpression (Fig e 3.7-1), 1 ,e e=  

1
2 3 2e e e= = −

 
 so 

 1
2(( ) )w e w eτ ′ ′= − −  (3.7-10) 

be inv d to obtain 
 
(3.7-10) can erte
 

 ( )( ) ( )( )1 1 1
4 2 4

0
( ) k k

k
w e e eτ τ

=

′ = + −∑  (3.7

 

∞

-11) 

The series converges when ( ) 0eτ → as 0e → . 
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L
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Deformed

1

L2

L3

F1

Figure 3.7-1: Uniaxial tension/compression test
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ptotic conditions for w are 
 
3) The asym ( )w e′ → −∞  as ; e → −∞

( )w e′ → ∞ as . These asymptotic conditions correspond to 
the asymptotic conditions of infinite stre
 
4) For a stable material, it is necessary (but not sufficient) that 

e → ∞
sses for infinite strains. 

( ) 0w e′′ >  for all e. Not all materials for which ( ) 0eτ ′ > have 
( ) 0w e′′ > . For example, the material with 

 

 
( ) , 0

, 0
T

C

e E e e
E e e

τ = >
= <

 

 
( ) 0w e′′ >  where ET and EC are constants greater than zero, has 

only if  
 

 1
2 2T CE E ET< <  

 
5) Given only simple tension data for ( )eτ , there are multiple 

( )w e′ that exactly correspond to ( )eτ , for positive e only. Two 
( )w e′such are 
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( ) 0, 0

( ), 0
w e e

e eτ
′ = <

= >
 

 
and  

 

 
( ) ( 2 ),w e e e 0

0, 0e
τ′ = − − <

= >
 

 
Hence the material is not uniquely described given only uniaxial 
tension (or uniaxial compression) data. Both
uniaxial compression data must be provided to uniquely describe 
the material. 
 
6) The small-strain Young’s modulus E is found by differentiating 
the niaxial stress-strain curve, and evaluatin
the material is almost incompressible, the sm

modulus G is 

 uniaxial tension and 

 u g at e = 0, and, since 
all-strain shear 

1
3

 

 

G E= . The results are 

3 (0)E w
2

′′= , 
1 (0)G w
2

′′=  (3.7-12a, b) 

 
8) The Ogden material model can be considered a special case of 
(3.7-8), since the Ogden material model can be written in terms of 

( )w e′ : 
 

 ( )( ) exp( ) 1n nw e eµ α′
n

= −∑  (3.7-13) 

 
Spline representation of ( )w e′ : 
 
In the Sussman-Bathe model, we choose  to fit given uniaxial 
ten
 

rm
ta points

( )w e′
sion/compression data very well, as follows. 

The uniaxial tension-compression data is in the fo  of user-
specified da  ( ),i ie τ . From these data points, we build a 
non-uniform cubic spline representation of the uniaxial 
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tension/compression stress-strain data ( )eτ τ= , as shown in 
Figure 3.7-2. For the non-uniform cubic spline representation of 

( )eτ , 
 
1) A spline segment is placed between two successive use
data points. The user-input data po

r-input 
ints need not be equally spaced. 

er-

he slope of

 
2) The range of the cubic spline is between the first and last us
input data points. 

 
3) Outside the range of the cubic spline, t  ( )eτ is greater 
than zero. This ensures that the asymptotic conditions of 

( )τ −∞ = −∞ , ( )τ ∞ = ∞  are met. 
 

�( )e

Segment of Slope > 0

e

emin,�

emax,�

Measured data point
Slope > 0

cubic spline

 Figure 3.7-2: Uniaxial tension/compression stress-strain spline 
 

 
Using the non-uniform cubic spline representation of ( )eτ  and 
(3.7-11), we build a uniform cubic spline for

bic spline representation of
 ( )w e′  as shown in 

 ( )w e′ , Figure 3.7-3. For the uniform cu
 
1) 

sion and in 

The same number of spline segments is used in tension and in 
compression.  
 
2) The range of the cubic spline is the same in ten
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com

 
3) Outside the range of the cubic spline, the slope of  is 
gre ha
 

 

pression. This range includes the range of the user-input data 
points. 

( )w e′
ater t n zero, whenever possible.  

 

Figure 3.7-3: ( ) splinew e’

w e’( )

e

emin,w’

emax,w’

Segment of
cubic spline

Slope > 0

Slope > 0

 
 

 In order to measure the accuracy of the spline representation of 
( )w e′ , we define the relative interpolation error 

 

 
( ) ( )e eτ τ−max

( )e
r

eτ
=  (3.7-14) 

 
in which ( )eτ  is the stress evaluated from the spl
of 

ine representation 
( )w e′ (using 3.7-10), and ( )eτ  is the stress evaluated from the 

spline representation of ( )eτ . 
 The r of spline segments is automatically chos ake
the interpolation error r smaller than a user-specified value. 
Typically only a few spline segments need be used for ( )w

 numbe en to m  

e′  i
 

n 
order to reduce the interpolation error to a value smaller than
experimental error. 
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 Each cubic spline segment in ( )w e′ can be written  
 

( )w e′ 3 3
1 1i i+ + (1 ) (1 )i iA z B z A z B z= + + − + −  (3.7-15) 

 
for the segment 1i ie e e +≤ ≤  where )1( ) /(i i iz e e e e+= − − . With 
this definition, can be written 
 

( )w e

2 4 2 4

1 1 1
1( i i i i

z ze B A+ + +− + +
(1 ) 1 (1 )( ) )

2 4 2 4i i i
z zw e C e A B

⎛ ⎞− − − −
= + +⎜ ⎟

⎝ ⎠
 

  (3.7-16) 
 
The program determines the constants Ai, Bi, Ci from uniaxial 
tress-strain data, as described above. The constants  Ai, Bi, Ci are 

liste e . 

e  
incompressible. Therefore WV  is zero and W = WD. A 
displacement-based finite element formulation is used, exactly as 
for the Mooney-Rivlin material model described above.  
 
Plane strain, axisymmetric and 3-D analysis: The material is 

dulus is not  
e material is t 

. 
 odified by 1) substituting the deviatoric 
principal strains for the corresponding principal strains, 2) 
rem e1 + e2 + e3 = 0, a
volumetric strain energy density 
 

s
d in the output file when th  model definition is listed

 
Plane str h material is assumed to be totallyess analysis: T

modeled as compressible (that is, the bulk mo infinite),
but the bulk modulus can be set high so that th  “almos
incompressible”

Equation (3.7-8) is m

oving the condition nd 3) adding the 

( )ln  (V J J 1)W Jκ= − −
 
where κ is the bulk modulus. The relationship between the pressu
and the volume ratio is 

 (3.7-17) 

re 

 
  ( )1 2 3lnp J e eκ κ= − = − + + e  (3.7-18) 
 
which is a generalization of the small-strain pressure-strain 
relationship. The u/p formulation is always used. For comments 
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 form ments in the 
Mooney
 
Data inpu sideration
 
1) of stress rain da ts, with 
positive stresses/strains correspo  to uniaxia

es/strains corresponding to uniaxial compression. 
ta 

program e strain curve in 
comp t likely not a good 
assumption. 
 
3) The stresses and strains in the set of stress-strain data points can 
be either 
 
a) True stresses and logarithmic strains (SSTYPE=True in 

n 

c) Engineering stresses and stretches (SSTYPE=Stretch in 
MATHE) 

 
4) Data points from equibiaxial tension experiments can be 
con
conversion formulas are: 

 

about the u/p ulation, see the corresponding com
-Rivlin material description. 

t con s: 

Data input is in the form of a set -st ta poin
nding l tension and 

negative stress
Compression and tension data are entered together in the same da
set. 
 
2) The data set should contain both tension and compression data 
(compression data is possibly converted from equibiaxial tension 
data, see below). If the data set contains only tension data, the 

 will assume that the true stress / tru
ression is a straight line, which is mos

MATHE) 
b) Engineering stresses and engineering strains (SSTYPE=Eng i

MATHE) 

verted into equivalent uniaxial compression data. The 

 
2u be e= − , 2

u bλ λ −= , ( ) 2
0 01 1u be e −= + −  (3.7-19) 

 3
b bu bτ τ= − , 0 0uσ σ λ  = −

 
wh
is th

l h, 
ibiaxial engineering 

strain, τ u is the equivalent uniaxial true (Cauchy) stress, τ b is the 

ere eu is the is the equivalent uniaxial logarithmic strain (< 0), eb 
e equibiaxial logarithmic strain (> 0), λu is the equivalent 

uniaxia  stretc λb is the equibiaxial stretch, 0 eu is the equivalent 
uniaxial engineering strain, 0 eb is the equ
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equ t ial 
ng neering stress, 0σ b  is the equibiaxial engineering stress. All of 

hness 
s and waviness in the 

ibiaxial true (Cauchy) stress, 0σ u is he equivalent uniax
e i
these conversion formulas assume that the material is 
incompressible. 
 
5) The Sussman-Bathe model fits the data so closely that roug
and waviness in the data causes roughnes

( )w e′  splines. The program does not smooth the data in order to 
 
 

ta into the 
pro
 
6) ial, then the 
Sussm
mo

7) The strain range of the data set should contain the range of 

 
3.7.6  Ther

 

eliminate roughness and waviness. If the original data set contains
roughness and waviness that should not be present in the analysis,
the tering the da data set should be smoothed before en

ram. g

If the data set corresponds to a stable mater
an-Bathe model is stable, otherwise the Sussman-Bathe 

del may not be stable. 
 

strains anticipated during the analysis. 
 
8) Do not confuse uniaxial compression with hydrostatic 
compression. These two test cases are very different. 

mal strain effect 
 
• When the material is temperature-dependent, a coefficient of 
thermal expansion can be included. The coefficient of thermal 
expansion is constant. The thermal strain is calculated as 
 
 ( )0thε α θ θ= −  
 
where 0θ  is the initial temperature, and it is assumed to be 
isotropic. This is similar to the formula as is used for the other 
thermo-elastic materials, see Section 3.1.6 assuming a constant 
thermal expansion coefficient. 
 
• When the thermal strain is non-zero, the deformation gradient 

 is assumed to be decomposed into a thermal deformation 
gradient  and a mechanical deformation gradient , using 
X

thX mX
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  m th=X X X  
 
The thermal deformation gradient is 
 
  (1 )th the= +X I   
 
therefore the mechanical deformation gradient is  
 

  
 
the mechanical Cauchy-Green deformation tensor is  

1(1 )m the −= +X X  

 
−  2(1 )m the= +C C  

 
and the mechanical Green-Lagrange strain tensor is  
 

 ( )2 21(1 ) 1 (1 )
2m th the e− −= + − − +ε ε I  

 
or small thermal strains, the last equation reF duces to 
m the≈ −ε ε I , so that the strains are nearly the sum of the 

mechanical and thermal strains, as in small strain analysis. 
However, we do not assume that the thermal strains are small. 

d 

e 

 
• The strain energy densities are computed using the mechanical 
deformations. This is done by computing all invariants an
stretches using the mechanical deformations, e.g. the mechanical 
Cauchy-Green deformation tensor. 
 The 2nd Piola-Kirchhoff stresses are obtained by differentiating 
the strain energy density with respect to the total strains. Since th
strain energy density is a function of the mechanical strains, we 
obtain 
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1
2 ) ( )

) )1
2 ) ) ( ) )

ij
ij ji

m ab m ba

m ab ij m ba ji

W WS

W W

ε

ε ε
ε ε ε

⎛ ⎞

 

( )( )2 11 W We − ⎛ ⎞∂ ∂
= + +⎜ ⎟

2 ) ( )m ij m jiε εth

∂ ∂
= +⎜ ⎟⎜ ⎟∂( ∂ ε⎝ ⎠

⎛ ⎞∂( ∂(∂ ∂
= +

⎜ ⎟

⎜ ⎟⎜ ⎟∂( ∂( ∂ ε ∂(⎝ ⎠
 

∂(
 
Wi fin gate 
to the Green-L
 

3.7.7  Viscoela cts
 
• Viscoelastic effects can be included in the Mooney-Rivlin, 
Ogden, Arruda-Boyce, hyper-foam and Sussman-Bathe material 
mo
 The viscoe  the 
following references: 

 
f. G. A. Holzapfel, “On large strain viscoelasticity: 

 to 
, Vol. 

39, pp 3903-3926, 1996.  

ref. G. A. Holzapfel, 
um approach for engineering. John Wiley & 

Sons, Chichester, pp 278-295, 2000.  
 

emaitre (ed.), Handbook of Materials Behavior 
Models: Nonlinear Models and Properties, Academic 

 
 

∂⎝ ⎠

th this de ition, the 2nd Piola-Kirchhoff stresses are conju
agrange strains. 

stic effe  (Solution 601 only) 

dels.  
lastic model used is due to Holzapfel, see

re
continuum formulation and finite element applications
elastomeric structures”, Int. J. Num. Meth. Engng.

 
Nonlinear solid mechanics. A 

continu

ref. G. A. Holzapfel, “Biomechanics of soft tissue”, in 
L

Press, 2001, pp 1057-1071. 
 
In the following, we give a brief discussion of the Holzapfel 

model for finite strain viscoelasticity. 
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quivalent 1D model:  The equivalent 1D model is shown in Fig 
3.7-4. It is the same as a generalized Maxwell model with many 
E

chains. A generic chain is denoted with superscript α , as shown 
the figure. 

 

E
�

E
1 �1

Strain
stress

e,
�

in 

��
E

�

 viscoelastic effects

Strain

g
�

Strain

��

...

Figure 3.7-4: Equivalent 1D model for

 
  
 
The spring E∞  is equivalent to the elastic stiffness of the 

model. Each chain contains a spring with stiffness Eα  and dashpot 
with viscosity αη . (Note that the superscripts ∞  and α  do not
denote exponentiation.)  The strain in each chain is the sum of t
strain in the spring g

 
he 

α  and the strain in the dashpot αΓ . The 
sob erved stress is 
 
 qα

α

σ σ= +∞ ∑  (3.7-20) 

 
where E eσ ∞ ∞=  is the elastic stress and q E gα α α α αη= = Γ  is 

the stress in chain α . Using the definition 
E

α
α

α

ητ =  and the 

as umption E Eα αβ ∞= , the following expression is obtained: 
 

 

s

1q qα α α
α β σ

τ
∞+ =  (3.7-21) 
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Assuming that 0 0qα = , (3.7-21) can be written in convolution 
rfo m as  
 

 
0

exp
t

tt tq dtα α
α β σ

τ
′ ∞′−⎛ ⎞ ′= −⎜ ⎟

⎝ ⎠
) ∫  (3.7-22

 
from which the total stress is 

 

 
0

1 exp
t

tt tE e dtα
α

α

σ β
τ

′∞ ′⎡ − ⎤⎛ ⎞ ′= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑∫  (3.7-23

 
Evidently the relaxation modulus is 

) 

( ) 1 exp tE t E α
α

α

β
τ

∞ ⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑  which is a Prony series 

expression. 
 
The dissipation in dashpot α  is 
 

( ) 1 qα⎛ ⎞
D q q e g q e

E
α α α α α α

αβ ∞= Γ = − = −⎜ ⎟
⎝ ⎠

 (3.7-24) 

 
nd the total dissipation isa  D Dα

α

= ∑ . In the above, the 

viscoelastic material constants for each chain are and .α ατ β  
 

Potential-based 1D model:  The 1D model can be written in terms 
of a potential as follows: 

 
 ( ) ( )e gα α

α

∞Ψ = Ψ + Ψ∑  (3.7-25) 

 

where 21( )
2

e E∞ ∞Ψ = e  is the strain energy of the elastic chain 

and ( )21( )
2

g E gα α α αΨ =  is the strain energy in the spring of 
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chain α . In terms of αβ , ( ) (g g )α α αβ ∞Ψ = Ψ α . The 1D model 

is recovered by defining 
 

 
fixede α

σ
Γ

∂Ψ
=

∂
, 

fixede

qα
α

∂Ψ
= −

∂Γ
 (3.7-26a,b) 

 
Notice that (3.7-20) and (3.7-26a) imply  

 

  fixed

q
e gα

α α
α

α
Γ

∂Ψ ∂
= =

Ψ
∂ ∂

.  

 
Finite strain model:  The finite strain model is derived from the 
potential-based 1D model as follows. The elastic potential is 
defined as 

 
 ( ) ( )W∞Ψ =ε ε  (3.7-27) 
 

here ( )ijW εw  is the strain energy density from the elastic part of 

e material model. The potential of each chain α  is defined as  
 

th

( ) ( )
( )
( )

, , usage=combined

, usage=deviatoric

, usage=volumetric

ij ij ij

D ij

V ij

W G

W G

W G

α α α α

α α

α α

ε β

β

β

Ψ Γ =

=

=

  (3.7-28a,b,c) 

 
in which the usage flag (which is a user-input flag) determines 
whether the entire elastic strain energy density, deviatoric strain 
energy density or volumetric strain energy density is taken for 
chain α . Here ijGα  is analogous to the strain in the 1D spring gα , 

and we assume ij ij ijGα αε= − Γ . Note that with this definition of 

ijGα , we have 
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fixedij

ij
ij

S
α

ε
Γ

∂Ψ
=

∂
, 

fixed fixedij ij

ij
ij ij ij

Q
Gα

α
α

α α

ε
ε

Γ

∂Ψ ∂Ψ ∂Ψ
= = − =

∂ ∂Γ ∂
 

 (3.7-29a,b) 
 

where ijS  are the 2

 

nd Piola-Kirchhoff stresses and ijQα  is a

to the stress q

nalogous 
α .  

Following exactly the same arguments as in the 1D case, we 
obtain 

 

 
1α α α

ij ij ijQ Q Sα β
τ

∞+ =  (3.7-30) 

Assuming that 
 

0 α 0ijQ = , (3.7-30) can be written in convolution 
form as  

 

0

exp
t

t
ij ij

t tQ Sα α
α β

τ
′ ∞′−⎛ ⎞ ′= −⎜ ⎟

⎝ ⎠∫ dt  (3.7-31) 

and (3.7-31) can be numerically approximated using 
 

 

 ( )
1 exp

tt α
α α α τexpt t t t t
ij ij ij ij

t

S SβQ Q tα

α
τ

τ

+∆ +∆ ∞ ∞

∆⎛ ⎞− −⎜ ⎟
+ −⎜ ⎟  

 (3.7-32) 
 

(3.7-32) is exact when 

∆⎛ ⎞ ⎝ ⎠= −
∆⎝ ⎠

ijSα  does not change during the time step, 
and is more accurate than the formula given by Holzapfel: 

 

 ( )exp exp
2ij ijα ατ τ

t t t t t t
ij ij

t tQ Q S Sα α αβ+∆ +∆ ∞ ∞∆ ∆⎛ ⎞ ⎛ ⎞= − + − −⎜ ⎟ ⎜ ⎟
⎠

 

 (3.7-33) 
 

⎝ ⎠ ⎝
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especially when 
t

ατ
∆

 is large. 

 
Di
calculated using 

 

ssipation calculations: If the dissipation is required, it is 

( )ij ij ij ij ijD Q Q Gα α α α αε= Γ = −  (3.7-34) 

 
where 

2

rs ij 
ij rs

G Q
G G

α
α α

α α

∂ Ψ
=

∂ ∂
 (3.7-35) 

 
is used to compute the unknown rsGα  from the known ijQα .  

=combined,  If usage
 

 
2 α

β β∂ Ψ
=

2

ijrs
ij rs ij rs

W C
G G

α α
α α ε ε

∂
=

∂ ∂ ∂ ∂
. (3.7-36) 

 
where the tensor  is evaluated at the strain state ijrsC ijGα . The 
dissipation calculation requires the solution of a set of simultaneous 
linear equations o h 
integration point. 

 usage=deviatoric,  

f at most order 6 (in the 3D case) at eac

If
 

( )
2 2α∂

 D
D ijrs

ij rs ij rs

W C
G G

α α
α α β β

ε ε
Ψ ∂

= =
∂ ∂ ∂ ∂

 (3.7-37) 

 
where the tensor ( )D ijrs

C  is evaluated at the strain state ijGα . Here, 

the dissipation calculation requires a singular value decomposition 
of ( )CD ijrs

, since ( )D ijrs
C  has a zero eigenvalue. A similar 

situation applies when usage=volumetric, except that the 
corresponding material tensor has only one nonzero eigenvalue. 

The procedure given in (3.7-34) to (3.7-37) is only 
app n

 
r  ij ij ijGα αε= − Γ  oximate, since the fundamental assumptio
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strictly speaking only holds for small strain analysis. 

Restrictions and recommendations: The allowed values of the 
usage flag depend upon the material model and finite element type, 
as shown in Table 3.7-1. 

usa oam 
ma rial model, and that usage=“deviatoric” be used in conjunction 
with the Mooney-Rivlin, Ogden, Arruda-Boyce and Sussman-
Bathe material models. 

 
Mooney-Rivlin, Ogden, 

Sussman-Bathe 

hyperfoam 

 

In view of the restrictions, we recommend that 
ge=“combined” be used in conjunction with the hyper-f
te

 
 
 

Arruda-Boyce, 

Plane 
stress1 

Plane strain, 
axisym etric, 

3D2

Plane 
stress3  

Plane strain, 
axisymmetric, 

3D 
m

usage=c
(usa

esombined 
ge(i)=2)

yes no yes y

usage=deviatoric 
(usage(i)=0)

yes yes no yes

usage=volumetric 
(usage(i)=1)

no no no yes

 
1. Usage cannot be equal to “volumetric”. This is because the material is 

assumed to be fully incompressible, hence the volumetric strain energy 
density is zero. 

2. When the bined” or 
“volumetric”. This is because the m
caused whe  the usage flag is “ etric” is not taken into 
account in the u/p formulation. 

3. The only allowable value of the usage flag is “combined”. This is because 
the out-of- fel 

finite strain viscoelastic mode  that this can happen is if 

u/p formulation is used, the usage flag cannot be “com
odification to the volumetric stresses 

n combined” or “volum

plane stress component xxS  must be zero, and in the Holzap

xxS ∞  l, the only way
is zero.  

 
Table 3.7-1: Allowed values of the usage flag 



 3.7:  Hyperelastic material models 
 

 
 
Advanced Nonlinear Solution ⎯ Theory and Modeling Guide 165 

Tim
assumes that the viscoelastic response is not temperature-
dependent. One method of including the effects of temperature is 
the method of time-temperature superposition. 

temperature superposition, the actual time  is replaced 
by e 

e-temperature superposition: The preceding derivation 

tIn time-
ζ the reduced tim . The relationship between the actual time 

and redu ced time is given by 
 

 
1

t

d
dt a ( )T

ζ
θ

=  (3.7-38) 

where 
 

tθ  is the temperature and ( )t
Ta θ  is the shift function. 

Evidently 
 

 
0

1
( )

t
t

t dt
a

ζ
θ′T

′= ∫  (3.7-39) 

 
The shift function used here is either the WLF shift function, 

 

 

1
10

2

( )
log ( )

t
reft

T t
ref

C
a

C
θ θ

θ
θ θ
−

= −
+ −

 (3.7-40a) 

 

 
or the Arrhenius shift function 

 

10 1log ( ) ,t t
T reft

ref

a C

2

1 1

1 1 , t
reft

ref

C

θ θ θ
θ θ

θ θ

⎛ ⎞

θ θ

= −
⎠

⎛ ⎞
= − <⎜ ⎟⎜ ⎟

⎝ ⎠

 (3.7-40b) 

 

≥⎜ ⎟⎜ ⎟
⎝

where refθ  is the reference temperature and  are material 

onsta  that as

 1C , 2C

 ( )t
Ta θ  decreases and 

d
dt
ζ

 c otice  nts. N tθ  in escreas ,

increases.  
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When using the Arrhenius shift function, the temperature unit 
ust be absolute (Kelvin or Rankine). 

For the viscoelastic model used here, the differential equation of 
e

 

 
m

th  1D model (3.7-21) becomes 
 

1dq dq
d d

α
α

α
α σβ

ζ τ ζ

∞

+ =  (3.7-41) 

 

 
and using (3.7-38), (3.7-41) can be written as 
 

1
( )T

q q
a

α α
α

αβ σ
θ τ

∞+ =  (3.7-42) 

 
It is seen that the effect of temperature is to modi
constants. As the temperature increases, the modified time 
constants become smaller, that is, the material relaxes more 
quickly. 

The convolution equation of the finite strain model becomes 

 

fy the time 

 

0
ij dαexp

t
ijd S

Q dα αζ
tζ ζ β ζ

′ ∞′
′= −

−⎛ ⎞
τ ζ⎜ ⎟

⎝ ⎠
 (3.7-43) 

and (3.7-43) is numerically approximated by  
 

∫
 

( )
1 exp

eijQα =   xpt t t t t t
ij ij ijQ S S

α
α α

α

α

ζ
ζ τβ ζτ

τ

+∆ +∆ ∞ ∞

∆⎛ ⎞− −⎜ ⎟∆⎛ ⎞ ⎝ ⎠− + −⎜ ⎟ ∆⎝ ⎠

 (3.7-44) 
 

The only additional consideration is to calculate ζ∆ , and this is 
one using 

 

 

d

1
( )

t t

t
Tt

dt
a

ζ
θ

+∆

′
′∆ = ∫  (3.7-45) 
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erically assuming that ln ( )Ta θ  This integration is performed num
varies li arly over the tim
  

eat generation:  A user-specified fraction of the energy 

hermo-mechanical-coupling) analysis. 

lik er
bul ta 

en

f C1,
 
f A table with one row for each chain. Each row in the table 
contains beta(i)=

ne e step. 

H
dissipated by the viscoelastic model can be considered as heat 
generation. This heat generation can cause heating in a TMC 
(t

 
pecification of input: Viscoelastic effects are added to rubber-S
e mat ials using the MATHEV bulk data entry. The MATHEV 
k da entry includes: 
 
f SHIFT: Indicates the shift function (none, WLF or 
Arrh ius). 
 

 C2: The shift function material constants 1C , 2C  

αβ , tau(i)= ατ , hgen(i)= the heat generation 
tion, 

default value is 0.0), and usage(i)=usage flag (default value is 

ag can be different for each chain. 
 

e expensive. 

n. 
 calculated for the chain 

factor (fraction of dissipation considered as heat genera

deviatoric). There is no restriction on the number of chains 
permitted. The usage fl

• It is seen that the dissipation calculation can be quit
Furthermore the dissipation is not required for the stress solution. 
Therefore it is the default to not perform the dissipation calculatio
The dissipation is only α  when the heat 
gen

 
3.7.8  Mull

n 
the same strain state, the stress required for the 

reloading is less than the stress required for the initial loading. This 

ber-like materials. 
The material model used is the one described in the following 
reference: 

 

eration factor is non-zero. 

ins effect (Solution 601 only) 
 
When rubber is loaded to a given strain state, unloaded, the

reloaded to 

phenomenon is referred to as the Mullins effect. 
The Mullins effect can be included in the rub
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ref. R.W. Ogden and D. G. Roxburgh, “A pseudo-elastic 
model for the Mullins effect in filled rubbe
Soc. Lond. A (1999) 455, 2861-2877.  

 
We briefly summarize the main concepts below. 

Fig 3.7-5 shows the Mullins effect in simple tension
loading to force , the specimen follows the force-deflection 
curve a-b-c. When the load is removed, the specimen follows the 

follows the reloading curve a-d-c, and on further loading to force 
rve f. When t  is 

im n 

r”, Proc. R. 

. On initial 
cF

unloading curve c-d-a. On reloading to force cF , the specimen 

fF , the specimen follows the loading cu he load
removed, the spec en follows the unloading curve f-g-a, and, o
reloading to force

c-e-

 gF a-, the specimen follows the reloading curve 
g-f. 

 

 
Figure 3.7-5: Mullins effect loading-unloading-

reloading curves

Force

a

b

c

d

e
f

g

h

Deflection

 
 
Note that any permanent set associated with the Mullins effect 

is not included in the Ogden-Roxburgh model used h
The Ogden-Roxburgh model, as implemented in Advanced 

ing strain energy density 

 

D ijW Wη ε φ η= +
 (3.7-46a,b) 

where 

ere. 

Nonlinear Solution, uses the follow
expression: 

( ) ( ), all except hyper-foam
= ( ) ( ), hyper-foamijWη ε φ η+

 
( )ijW ε  is the total elastic strain energy density, ( )D ijW ε  is 
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the deviatoric elastic strain energy density, η  is an additional 
solution variable describing the amount of oadinunl g and ( )φ η  is 
the

pl
the (almost) incompressible ma

tot . For 
 

 damage function. W  is referred to as the pseudo-energy 
function. In our im ementation, the deviatoric strain energy 
density is used for terials and the 

al strain energy density is used for compressible materials
ease of writing, we discuss only the case of compressible materials;
for incompressible materials, replace W  by DW  in the equations 
below. 

η  is computed as 
 

 ( )1 11 erf mW W
r m

η ⎡ ⎤= − −⎢ ⎥⎣ ⎦
 (3.7-47) 

 
where erf( )x  is the error function 

 

 ( )2

0

2erf( ) exp
x

x u du
π

= −∫
 

 is the maximum value of enco
ation history

 (3.7-48) 

mW  W  untered during the 
deform  and m  and r  are material constants. 

( )φ η s defin  by  
 

 

 i ed

( )d W
d
φ η

η
= −   (3.7-49) 

 
and is computed by numerical integration of ( ) Wφ η = − . For 
given value of W , there is a minimum

η a 

m  value of η  computed as  
 

11 erf m
m

W
r m

η ⎡ ⎤= − ⎢ ⎥⎣ ⎦
  (3.7-50) 

 
The value of ( )φ η  at mη η=  is written ( )mφ η . (Note: the 
ubscript m eans “maximum”, but the subscript m  in the term mW  ms
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in the term mη  means “minimum”.)  The time rate of change of 
( )mφ η

 

 

 can be written as 

( ) 1( ) 1 erf m
m m m

WW W
r m

φ η η m
⎡ ⎤= − = ⎢ ⎥⎣ ⎦

 (3.7-51) 

 
Physically, ( )mφ η  is interpreted as the dissipation. 

During loading, mW W= , 0mW >  and 1η = . Therefore 

( ) 0φ η =  and ( ) 0mφ η >  during loading. 

During unloading or reloading, mW W> , 0mW =  and 

1mη η≤ < . Therefore ( ) 0φ η ≠  and ( ) 0φ η =  during unloam ding 
or reloading.  

ficance. Howeve  3.7 shows the dependence of an 
unloading-reloading curve in simple tension on these parameters. It 

m>> , 
the al r 

Material constants m  and r  do not have any direct physical 
signi r Fig -6 

is seen that, for an unloading-reloading loop in which Wm

 initi slope of the reloading curve is reduced by the facto
11
r

− . r  m

 
 
 

ust therefore be greater than 1.  
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Figure 3.7-6: Dependence of reloading curve on

Mullins effect material constants  
It can also be shown that the dissipation of g-unloadin
cycle, as shown in Fig 3.7-7, can be written as 

 

a loadin g 

 
2

0
1E

m mW Wmφ σ erf 1 exp mWde
mA r m m π

⎡ ⎤⎞⎛ ⎞⎛ ⎞⎛⎛ ⎞⎢ ⎥−⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
= = − −⎜ ⎟

⎝ ⎠⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∫   

  (3.7-52) 

.7-53) 

 
where  

 

 0m
A

W deσ= ∫  (3

 

C

0σ  is the engineering stress, e is the engineering strain. Therefore, 
given φ  and  from two loading-unloading cycles of different 
amplitude,  and  can be computed. 

 
 

mW
m r
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0
�=Force/orig

Figure 3.7-7: Dissipation in Mullins effect in a

loading-unloading cycle

inal area

Dissipation = shaded area

A

 
 

He t g d fraction of the energy 
dis heat 
generation. This heat generation can cause heating in a TMC 
(therm

ike 
.  

he rubber-Mullins data set includes: 

f R, M
 

 

3.8  Gasket material model (Solution 601 only) 

• Gasket two 
bodies/surfaces to create a sealing effect and prevent fluid leakage 
(see Fig. 3 et 
geometry can be modeled in Solution 601. The gasket material is 

se 
c 

et 
roperties. 

B

C

D

e=displacement/E

original length

 
eneration:  A user-specifiea

sipated by the Mullins effect model can be considered as 

o-mechanical-coupling) analysis. 
 
 

Specification of input: Mullins effects are added the rubber-l
material model using the MATHEM bulk data entry

T
 

: The material constants r and m. 

f HGEN: The heat generation factor (fraction of dissipation 
considered as heat generation). The default value is 0. 

s are relatively thin components placed between 

.8-1). While most gaskets are flat, any arbitrary gask

obtained using the MATG material entry to define the transver
and through-thickness gasket properties together with an elasti
isotropic MAT1 material entry to define the in-plane gask
p
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Gasket thickness direction

(material X axis)

Only one
through th

element
e thickness

Gasket in-plane
directions

Figure 3.8-1: Schematic of gasket  
  

 sealing effect is cre ted mpressive load, applied 
irection of the gasket th eds the initial yield 

stress of the gasket. The sealing effect is maintained as long as the 
compres
value. The gasket ruptures if the compressive stress exceeds the 
gasket’s
maintain
 
• The g
also be u ll displacement/small strain, large 
displace
 
• The gasket behaves as a nonlinear elasto-plastic material when 
compressed in the thickness or gasket direction. Its load-
deformation characteristics are typically represented by pressure-

ant or 
zero. The closure strain is always measured as the change in gasket 

ss divided by the original gasket thickness. The gasket’s 
uni-directional plasticity model speeds up computations, and allows 
more flexi e shape of the loading and unloading 
curves. 
 
• The clo as the change in gasket 
thickness divided by the original gasket thickness. It is positive in 
compression. The gasket pressure has units of stress, and it is also 

• The
in the d

a  when the co
ickness, exce

sive stress does not drop beyond a specified threshold 

 ultimate stress. Unlike rupture, if a gasket leaks it still 
s its load-deflection characteristics. 

asket model can be used with 3-D solid elements. It can 
sed with sma
ment/small strain kinematics. 

closure curves. Tensile stiffness can be assumed to be const

thickne

bility in defining th

sure strain is always defined 

positive in compression. 



Chapter 3: Material models and formulations 
 

 
 
174 Advanced Nonlinear Solution ⎯ Theory and Modeling Guide 

ts. 

 to define a 
loading/unloading curve for each point on the main loading curve. 

 

sed plasticity. 

 has 

 
Crushed: Gasket closure strain has exceeded the rupture value. 
 

 

as a single layer of 3-D elements. 
nly linear elements are possible (6-node wedge and 8-node brick 

sket has different properties in different directions, 
 is

ey are not explicitly defined 
y the user. 

 

 
• Fig. 3.8-2 shows a typical pressure-closure relationship. It 
consists of a main loading curve consisting of any number of 
elastic segments and any number of plastic loading segmen
Loading/unloading curves can be provided for different points on 
the loading curve. However, it is not necessary

• Each gasket can have one of the following five states: 
 

Open: The gasket pressure is less than the leakage pressure. 
 
Closed: The gasket pressure is higher than the leakage 

pressure but has not yet cau
 
Sealed: There has been plastic gasket deformation and the 

current pressure is above the gasket leakage 
pressure. 

 
Leaked: After plastic deformation, the gasket pressure

dropped below gasket leakage pressure. 

Note that for output the gasket state is reported as an integer 
with the following allowed values: 
 
1 = Open; 2 = Closed; 3 = Sealed; 4 = Leaked; 5 = Crushed 
 
Modeling issues 
 
• The gasket must be modeled 
O
elements). 
 
• Since the ga
it  an orthotropic material. The material X-axis must be set to the 
gasket normal direction. Solution 601 attempts to automatically 
define the gasket’s material axes if th
b
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G
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k
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p
re

ss
u

re

Multiple loading/
unloading curves

Initial yield
point

Figure 3.8-2: Pressure-closure relationship for a gasket materia

• The top and bottom surfaces of a gasket can be separate from 
hose of the mating surfaces. In this case, the

l 

y should be connected 

 

/unloading curve must be one of the input point on the main 

 

l  material properties are needed for the gasket: 
dulus, tensile Young’s modulus. The following 

s, 

t
via contact. The gasket can also share a common surface with the 
intended mating surface. In this case, contact is not needed, 
however, the gasket cannot separate from its target. A gasket 
surface can also be attached to its mating surface via tied contact,
mesh glueing, constraint conditions, or rigid links. 
 
• The number of points in all loading/unloading curves must be 
identical for efficiency. Also the last point in each 

adinglo
loading curve. 
 
 • The leakage pressure is automatically set to 1% of the initial 
yield pressure. 

he input: In addition to the pressure-closure relationships the T
fo lowing transverse

ansverse shear motr
in-plane material properties are also required: Young’s modulu
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oisson’s ratio, thermal expansion coefficient and density. 
 

 

3.9. Shape emory alloy (Solution 6

M

• The SMA material model can be used with rod, 2-D solid, 3-D 
olid and shell elements. It is available only for impli

(Solution 601). 
 

 Shape memory alloy materials can undergo solid-to-solid phase 

) with a monoclinic crystal structure in several variants.  

hase are shown, as well as stress- and temperature-dependent 

temperatures or high stresses. Upon heating from low temperature 
the t 
tem ransformation is 100% complete at 
tem erature A . If the material is then cooled again, the austenite 
sta
tra ur 
tem ng 
the  
slo
respectively. A typical variation of volume fraction of martensite in 
the

P

Output variables: The following gaskets output variables are 
available: Gasket pressure, Gasket closure strain, Gasket yield
stress, Gasket plastic closure strain, Gasket status. 
 
• Note that all these output variables are scalar quantities. 

 m 01 only) 

• The Shape Memory Alloy (SMA) material model is intended to 
model the superelastic effect (SE) and the shape memory effect 
(S E) of shape-memory alloys. It is defined using the MATSMA 
material entry. 
 

s cit analysis 

 
 
•
transformations induced by stress or temperature. The high 
temperature phase is called austenite (A) with a body-centered 
cubic structure and the low-temperature phase is called martensite 
(M
 Fig.3.9-1 shows a schematic SMA stress-temperature diagram. 
The martensite phase in two generalized variants and the austenite 
p
transformation conditions. The martensite phase is favored at low 

 material begins transforming from martensite to austenite a
perature As. The t
p f

rts transforming back to martensite at temperature Ms. This 
nsformation is 100% complete at temperature Mf. These fo
peratures are also stress dependent with high stresses favori

 martensite phase. This stress dependence is assumed linear with
pe CM and CA for the martensite and austenite temperatures, 

 SMA material with temperature is shown in Fig. 3.9-2. 
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Figure 3.9-1: SMA stress-temperature phase diagram

, T

eff�

CM
CM CA CA

Twinned

Austenite

martensite

Mf
Ms

As
Af Temperature

 

Figure 3.9-2: Volume fraction of martensite vs. temperature
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al stress-strain curve is shown in Fig. 

0.4

0.6

0.8

0.2

• A typical uniaxial isotherm
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.9-3. 

oys




3
 
 
 
 
 

T > Af

�

T < As

�

(a)

Figure 3.9-3: Schematic of stress-strain curves for shape-memory all
(a) superelasticity; and (b) shape memory effect


(b)

 

 

from M
ffect is evident when the material is deformed at temperature T<As 

ed in Fig.3.9-3(b). A residual transformation strain 
remains after unloading; however heating the material to 

mperature above Af  leads to thermally induced M→A 
ation and the recovery of transformation strain. 

 
• Both shape memory effects due to transformation from 
martensite to austenite and due to re-orientation of the martensite 
are captured by modeling the twinned and detwinned martensites as 
different phases. 
 
• The SMA material model is based on the following equations: 
 
f The total strain, 
 

 
• The superelastic effect is evident when the material is deformed
at temperature T>Af  and is displayed in Fig.3.9-3(a). The stress 
cycle application induces transformations from A→M and then 

→A to exhibit the hysteresis loop. The shape memory 
e
and is display

te
transform

e t θε ε ε ε= + +  
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where 
 
ε e= elastic strain 
ε θ = thermal strain 
ε t = transformation strain; to be evaluated 
 
f The one-dimensional macro-scale model, 
 

s tξ ξ ξ= + ;  0 ≤ ξ ≤1 
ξ + ξΑ = 1 
ε t = ε tmax ξs 
 

max((1 ) )( )t
A M sE E θσ ξ ξ ε ε ξε= − + − −  

 
ξt = twinned martensite volume fraction 
ξs = detwinned martensite volume fraction  
ξA  = austenite volume fraction  
εt

max = maximum recoverable residual strain; a material 

) 
property usually obtained from a simple tension test 
when the material is fully detwinned martensite (ξs  = 1

 
f The flow rule of three-dimensional constitutive model, 
 

max
t t t
ij s ijnε ξ ε∆ = ∆  

 
3 ijt

ij

s
n

2 σ
⎛ ⎞

= ⎜ ⎟ ; for the martensitic transformation 
⎝ ⎠

 
3
2

t
ijt

ij tn
ε
ε

⎛ ⎞
= ⎜ ⎟⎜ ⎟ ; for the reverse transformation 

⎝ ⎠
 
where 
 
sij  = deviatoric stresses 
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3
2 ij ijs sσ =   is the effective von Mises stress 

 
3
2

t t t
ij ijε ε ε=   is the effective transformation strain 

 
This results in the following equation for deviatoric stress 
calculation: 
 

( )
( ) ( )

1

t t
t t t t t

ij ij ijt t

E
s

ξ
ε ε

ν ξ

+∆
+∆ +∆

+∆
′′= − ∆

+
 

 
where 
 

t t t t t t
ij ij ijε ε ε+∆ +∆′′ ′= −  

 
 
f Four phase transformation conditions, 
 
1. Starting condition for the martensitic transformation 
 

23 (
S

)M M Sf J C Mθ= − −  
 
2. Ending condition for the martensitic transformation 
 

23 (
f

)M M ff J C Mθ= − −  

 
3. Starting condition for the reverse transformation 
 

23 (
SA A )Sf J C Aθ= − −  

 
4. Ending condition for the reverse transformation 
 

23 ( )
fA A ff J C Aθ= −  −
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acco, 1999), 
 

f The phase transformation rate using linear kinetic rule 
(Auricchio and E. S

f
f

R
f

f
ξξ∆ = ∆  

 

2 23 (
2 t t )t t tJ Jf c

t t t

θ θ+∆−
∆ =  

o martensite transformation, 
 

σ+∆ − −
+∆

 
where, for the austenite t

- ,  
ff M Mf f c C= =  and  Rξ  = 1 - ξ     

 
and for the reverse martensite to austenite transformation, 
 

,  
ff A Af f c C= =  and  R = ξ   ξ  

 
 

f Evolution of single-variant detwinned martensite: 
Martensite re-orientation is based on the following condition 
 

23R R Rf J C θ σ= − −  
 
where 
 

Rσ = material yield property at θ  = 0 
 
CR = slope of yield function temperature variation 
 
Austenite to martensite transformation leads to 
 

sξ ξ=  
 
Martensite to austenite transformation leads to proportional 
transformation of the twinned and detwinned phases: 
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s
s

ξξ ξ
ξ

=  

 
t

t
ξξ ξ
ξ

=  

 
• Computational steps for the stress-integration of the SM
m del are as follows (Kojic and Bathe, 2005): 
 
1. Cal ia

A 
o

culate the tr l deviatoric stresses, assuming no additional 
phase transformation or re-orientation, 
 

 
( ) ( )

1 ( )

t
t t TR t t

ij ijt

Es ξ ε
ν ξ

+∆ +∆ ′′=
+

 

 
2. Check for martensitic re-orientation, 
 
 0f >  and t t

R sξ ξ<  and 1tξ <  
 

for nite to martensite transformation, 
 
 Check auste

 0f f
f sM M <  and 1tξ <  and 0f∆ >  

 
 Check for martensite to austenite transformation, 
 

0
f sA Af f <  and  and 0tξ > 0f∆ <   

 
3. In case of martensitic re-orientation solve the following 

overning equation: g
 

2

"
max

3( ) 0
2

( ) ( )
1 ( )

t t t t t t
s ij ij R R

t t
t t t t t t t t

ij ij s ijt t

g s s C

Es n

ξ θ

ξ ε ξ ε
ν ξ

+∆ +∆ +∆

+∆
+∆ +∆ +∆

+∆

σ∆ = − −

∆
= − ∆ ⋅

+ ∆

=

 (3.9-1) 
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The martensite reorientation calculation step is optional; it is 
activated when σR  > 0 is input. 
 
4. In case of austenite to martensite transformation, solve the 
following governing equation: 
 

2 23 ( )( ) ( ) 0
2

t t t t t
t t t

t t t t
f

R J Jg c
f

ξ ξξ ξ θ θ
σ

+∆ +∆
+∆

+∆ +∆

⎡ ⎤∆ −
∆ = ∆ − − − =⎢ ⎥

⎣ ⎦
  

  (3.9-2) 
 
where 
 

"
max1 ( )ij ij s ijt tν ξ+∆+ ∆

 

( ) ( ( ) )
t t

t t t t t t t tEs nξ ε ξ ξ ε
+∆

+∆ +∆ +∆∆
= − ∆ ∆ ⋅  

1Rξ ξ= − , 
ff Mf f= −  and  c = CM

. In case of martensite to austenite transformation, solve the 
overning equation (3.9-2) with 

 
 
 
5
g
 
Rξ ξ= ,  

ff Af f= and   = A

e the consistent tangent constitutive matrix. 

perature-Dependent 
or Shape-Memory Alloys: Constitutive 

            Modelling, Finite-Element Implementation and 

(1999) 

c C

 
6. Update history-dependent variables for this time step/iteration 
step. 
 
7.  Calculat
 

ref. M. Kojic and K.J. Bathe, Inelastic Analysis of Solids and 
Structures, Springer, 2005 

 
ref. F. Auricchio and E. Sacco, “A Tem

Beam f

Numerical Simulation”, Computer Methods in Applied 
Mechanics and Engineering, Vol. 174, pp. 171-190 
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3.10  Viscoelastic material model (Solution 601 only) 

 

 and 
and 3-D 

l
s, 

ain kinematics, a TL 
ith the large 
LH formulation is 

employed. 
 

ropic and linear viscoelastic 
aterial may be expressed in tensor notation as 

 

 

• The viscoelastic model can be used with the rod, 2-D solid, 3-D
solid and shell elements. 
 
• The viscoelastic model can be used with the small 
displacement/small strain, large displacement/small strain
arge displacement/large strain kinematics (2-D solid l

so id elements only). 
When used with the small displacement/small strain kinematic

a materially-nonlinear-only formulation is employed, when used 
with the large displacement/small str
formulation is employed and when used w
displacement/large strain kinematics, the U

• The mechanical behavior for an isot
m

0

( )( ) 2 (0) ( )ij ijs t G e t 2 ( )
t

ij
dGe t d

d
ττ τ

τ+

+ −∫  (3.10-1) 

 

=

 

0

( )( ) 3 (0) ( ) 3 ( )
t

kk kk kk
dKt K t t d

d
τσ ε ε τ τ

τ
= + −∫  (3

+

.10-2) 

 

where t is the time, 
1s
3ij ij ij kkσ δ σ= −  is the deviatoric stress, ijδ  

1
3ij ij ij kke ε δ ε= −is the Kronecker delta, ijσ  is the stress,  is the 

deviatoric strain, ijε  is the strain, G(t) is the shear modulus and 
K(t) is the bulk modulus. 

In the presence of a temperature variation ( )tθ  the stresses for 
an isotropic and thermorheologically linear viscoelastic mate
may be written as 

rial 
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0

( )dGξ ζ( ) 2 (0) ( ) 2 ( )ij ij ijs t G e t e d
d

ξ ζ ζ
ζ+

= + −∫  (3.10-3) 

 

 [ ]
0 0

3 (0) ( ) 3 ( ) 3 ( )kk kk kkK t d t d
d d

( ) ( )( ) th
kk

dK dKt
ξ ξζ ζσ ε ε ξ ζ ζ ε ζ

ζ ζ+ +

= + − −∫ ∫  

where 
 

( ) ,
t

d
τ

 (3.10-4) 

 d( )
0 0

ζ ψ θ η η ξ= = ψ θ τ τ
+ +

⎡ ⎤ ⎡ ⎤⎣ ⎦∫ ∫ ⎣ ⎦  (3.10-5) 

 
and the thermal strain is given by 

 
 ( ) ( ) ( ) ( )[ ]0 03 ( ) 3th

kk TALPHA TALPHAt t tε α θ θ θ α θ θ θ= − − −⎡ ⎤⎣ ⎦  (3.10-6) 
 

( )( )tα θ  is the temperature-dependent coefficient of thermal 

expansion and ( )tψ  is the shift function, which obeys 
 

 0( ) 1, ( ) 0, 0dT T
dT
ψψ ψ= > >  (3.10-7) 

 

Note that TALPHAθ  is the reference temperature used for thermal 
train calculation. 

t, equations (3.10-3) and (3.10-4) reduce 

 
 We assume the following thermo-material properties: 

 

 

s
In equations (3.10-3) and (3.10-4) it is assumed that the 

mechanical and thermal responses are uncoupled. Furthermore if 
he temperature is constant

to equations (3.10-1) and (3.10-2). 

•

1
( )

G
it

i
i

G t G G e
η

β−
∞

=

= + ∑  (3.10-8) 

 

 K t K K e
η

1i
( )

K
it

i
γ−= + ∑  (3.10-9) 

 

∞
=
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 ( ) 0tθ ≠  (3.10-10) 
 

 ( )( )tα α θ=  (3.10-11) 
 

where G∞  and K∞  are the long-time shear modulus and bulk 
modulus respectively, iβ  and iγ  are the decay constants for the 
shear modulus and bulk modulus respectively and Gη  and Kη  are 
the number of time-dependent terms for the shear modulus and 

 bulk modulus respectively. Equations (3.10-8) and (3.10-9) are
referred to in the literature as Prony or Dirichlet series. Gη  and Kη  
are limited to a maximum value of 15. 

The shift function used is either the Williams-Landell-Ferry 

 
(WLF) equation, written as follows 

( )
 

( )
1 0log ( )

C
10

2 0C
θ θ

ψ θ
θ θ+ −

 (3.10-12) 

or the Arrhenius shift function  

−
= −

 

 

10 1 0
1 1log ( ) ,C

0

2 0
0

1 1 ,C

ψ θ θ θ
θ θ

⎛ ⎞
= − ≥

 

θ θ
θ θ

⎜ ⎟
⎝ ⎠
⎛ ⎞

= − <⎜ ⎟
⎝ ⎠

 (3.10-13) 

 

in which C1 and C2 are material constants, and 0θ  is defined as the
initial temperature of the model, which must be the same as t
reference temperature of the viscoelastic material model. 
 
• The viscoelastic material is specified using the MA

 
he 

TVE bulk 
ata entry. The MATVE bulk data entry uses TABVE bulk data 

 

 
• The nodal point temperatures are input as discussed in Section 
5.6. 

 
 For more information, see the following references: 

 

d
entries for the input of the shear and bulk modulus relaxation
functions. 

•
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and 
relaxation of nonlinear viscoelastic materials, Dover 

 

3.11  Heat transfer materials (Solution 601 only) 

 

) are 
ents. 

he orthotropic materials (MAT5 and MATT5) are only available 
shell elements. 

 
 
s 

ditions and 
are therefore addressed in Chapter 5. 

3.11.1  Constant isotropic material properties 
 

 

 
3.11.2  Constant orthotropic conductivity 

 

ts 

 
 is isotropic for this model. 

ref. W.N. Findley, J.S. Lai and K. Onaran, Creep 

Publications, 1976. 
 
ref. R.L. Frutiger and T.C. Woo,  “A thermoviscoelastic 

analysis for circular plates of thermorheologically simple 
material”, Journal of Thermal Stresses, 2:45-60, 1979.

 

• Heat transfer materials are available for heat transfer analyses
and coupled structural heat transfer analyses (SOL 601,153 and 
SOL 601,159) 
 
•  The isotropic materials in this section (MAT4 and MATT4
available for rod, beam, 2-D solid, 3-D solid, and shell elem
T
for 3-D solid and 

! The convection heat transfer coefficient and heat generation
capacity are input via the MAT4/MAT5 entries. However, in thi
manual they are considered as loads and boundary con

 

! This material model is obtained with a MAT4 material entry. 
The thermal conductivity and heat capacity are independent of 
temperature and time and do not exhibit any directional 
dependence due to the material. 

! This material model is obtained with a MAT5 material entry. 
The thermal conductivity is orthotropic, that is, the model exhibi
a directional dependency. Three constants 1 2 3, ,k k k  give the 
thermal conductivity along material axes (1,2,3), respectively. 

 The heat capacity!
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3.11.3  Tem e
 

! Both the constant isotropic and the constant orthotropic material 
perature dependent by adding MATT4 or 

s. 

is case they are defined using 

p rature dependent thermal properties 

models can be made tem
MATT5 material entrie
 

 Both thermal conductivity and heat capacity can be made !

temperature dependent. In th
piecewise linear input curves.
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4. Contact conditions 
 

• Contact conditions can be specified in Advanced Nonlinear 
Solution to model contact involving 3-D solid elements, shell 
elements, 2-D solid elements, and rigid surfaces. 

 
• Very general contact conditions are assumed: 

 

ion laws 

es is 

 be modeled (Solution 601 only). 

m s used in Advanced Nonlinear 

ent of 
Inequality Constraints Arising From Contact Conditions 
in Finite Element Analysis," J. Computers & Structures, 
Vol. 40, No. 2, pp. 203-209, July 1991. 

f. Pantuso, D., Bathe, K.J. and Bouzinov, P.A."A Finite 
Element Procedure for the Analysis of Thermo-
mechanical Solids in Contact," J. Computers & 

ol. 75, No. 6, pp. 551-573, May 2000. 

ref. KJB
Section 6.

f The points of contact are assumed not known a priori. 
 

f Friction can be modeled according to various frict
(only standard Coulomb friction for Solution 701). 

 

f Both sticking and sliding can be modeled. 
 

f Repeated contact and separation between multiple bodi
permitted in any sequence. 

 

f Self-contact and double-sided contact are permitted. 
 

f Tied contact can
 

f A small displacement contact feature is available. 
 

So e of the contact algorithm
Solution are described in the following references: 

 
ref. Bathe, K.J. and Chaudhary, A., "A Solution Method for 

Planar and Axisymmetric Contact Problems,"  Int. J. 
Num. Meth. in Eng., Vol. 21, pp. 65-88, 1985. 

 
ref. Eterovic, A. and Bathe, K.J., "On the Treatm

 
re

Structures, V
 

• Contact in Advanced Nonlinear Solution is modeled using 
contact sets, contact surfaces (regions), contact segments and 
contact pairs, as explained in much greater detail below.  
 

7
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Contact Case C
Command 

• Table 4-1 lists the case control commands related to contact, 
Table 4-2 lists the bulk data entries related to contact surface 
definition, and Table 4-3 lists the bulk data entries related to 
contact set definition. 
 
 
 

ontrol Description 

BCSET ch contact set to use Selects whi

BCRESULTS Selects which contact results to output 

 
T

Contact Surface
Data Entry 

able 4-1: Case Control commands related to contact 
 

 Bulk Description 

BSURFS and Define contact surface on 3-D solid elements (by element 
nodes) 

BSURF  number) Define contact surface on shell elements (by element

BCPROP Define contact surface on shell elements (by property ID) 

BCPROPS Define contact surface on free faces of 3-D solid elements (by 
property ID) 

BLSEG Define contact surface on 2-D axisymmetric, plane strain and 
plane stress solid elements (by node numbers) 

BCRPARA Set parameters for contact surface 

 
Table

Contact Set Bulk Data 
Entry 

Description 

 4-2: Bulk Data entries related to contact surface definition 
 

BCTSET Define contact sets 

BCTADD Define union of contact sets 

BCTPARA Set parameters for contact sets 

 
Table 4-3: Bulk Data entries related to contact set definition 
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• Most of the features and tolerances needed for contact sets are 
provided in the BCTPARA entry. An explanation of this entry is 
provided in the NX Nastran Quick Reference Guide. Some contact 
settings however apply to all contact sets (such as contact 
convergence tolerances, suppression of contact oscillations). These 
settings are provided in the NXSTRAT entry. 

4.1  Overview 

• Contact sets (and their contact surfaces) in Advanced Nonlinear 
Solution can be either 2-D or 3-D. The contact surfaces should be 
defined as regions that are initially in contact or that are anticipated 
to come into contact during the solution. 
 
f 2-D contact surfaces are either axisymmetric or planar and must 
lie in the global XZ plane, with all X coordinates equal to zero.  
 
f A 3-D contact surface is made up of a group of 3-D contact 
segments (faces) either on solid elements, shell elements or 
attached to rigid nodes. See Fig. 4.1-1 for an illustration. 
  
 

Contactor surface

(surface of cylinder)

3-D contact surface pair

Body 2

Body 1

Target surface

(top surface of

body 2)

Figure 4.1-1: Typical contact surfaces and contact pair 
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ay 
urfaces 

 
with itself during the solution.) 

d 

• A contact pair consists of the two contact surfaces that m
come into contact during the solution. One of the contact s
in the pair is selected to be the contactor surface and the other 
contact surface to be the target surface. In the case of self-contact, 
the same surface is selected to be both contactor and target.  (Self-
contact is when a contact surface is expected to come into contact

 
• Within a contact pair, the nodes of the contactor surface are 
prevented from penetrating the segments of the target surface, an
not vice versa. 
 
• Fig. 4.1-2 shows the effect of contactor and target selection on 
the different contact configurations. 
 

Contactor
surface

No penetration Target

No penetration

Target
surface

surface

Contactor
surface

Figure 4.1-2: Contactor and target selection

 In Solution 601 at least one of the two contact surfaces in a 
ontact pair must not be rigid. If one surface is rigid, this surface 

 in most cases, be the target surface. 

olution 701 both contactor and target surfaces can be rigid if 
e penalty algorithm is used. Otherwise, the same restriction 
e

 
 
•
c
should,
 
• In S
th
m ntioned above for Solution 601 applies. 



 4.1:  Overview 
 

 
 
Advanced Nonlinear Solution ⎯ Theory and Modeling Guide 193 

 Rigid surfaces have no underlying elements and therefore no 
of 

gidly linked to a master node which is defined on the BCRPARA 
entry. 
 
• Symmetric contact pairs can be defined, where in one contact 

i arget, and in 
he 

s 

•
flexibility apart from rigid body motions. All their nodal degrees 
freedom must be either fixed, have enforced displacement, or be 
ri

pa r surface A can be the contactor and surface B the t
another contact pair surface B is the contactor and surface A is t
target. A non-zero contact surface compliance should always be 
used with symmetric contact pairs. 
 
• Basic concepts 
 
• The normal contact conditions can ideally be expressed a
 
 0; 0; 0g gλ λ≥ ≥ =  (4.1-1
 
where g is a gap, and λ is the normal contact force. Different 
algorithms may vary in the way they impose this condition. 

) 

 
• For friction, a nondimensional friction variable τ can be defined 
s a  

TFτ
µλ

=  (4.1-2) 

 

 

 

 

where FT  is the tangential force and λ is the normal contact force.
 
• The standard Coulomb friction condition can be expressed as
 

 
( )while 1 implies sign ( )

and 1 implies 0 
sign

u
u

τ
1τ

τ τ
< =

=
 (4.1-3) 

g 
ence, 
ms. 

ref. KJB
Section 6.7.

≤

=
 
where u  is the sliding velocity. 
 
• In static analysis, the sliding velocity is calculated by dividin
the incremental sliding displacement by the time increment. H
time is not a dummy variable in static frictional contact proble
 

2
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be 
s. 

are 
 

No contact: the gap between the contactor node and target 
segment is open. 
 
Sliding: the gap between the contactor node and the target 
segment is closed; a compression force is acting onto the 
contactor node and the node kinematically slides along the 
target segments (either due to frictionless contact to a frictional 
restrictive force less than the limit Coulomb force. 

 
Sticking: as long as the tangential force on the contactor node 
that initiates sliding is less than the frictional capacity (equal to 
the normal force times the Coulomb friction coefficient), the 
contactor node sticks to the target segment. 

 
• Old and new contact surface representations 
 
Two types of contact surface representation are supported in 
Advanced Nonlinear Simulation, an old and a new contact surface 

eter in the NXSTRAT 
y). The new contact surface representation is the default. The 

main differences between the two representations are: 

es 

dratic (up to 3 
odes for 2D contact, up to 9 nodes for 3D contact). 

- In the new representation, contact is based on the actual faces of 

 
te contact traction 

calculation algorithm. 

• When (Coulomb) friction is used, the friction coefficient can 
constant or calculated from one of several predefined friction law
 
• The possible states of the contactor nodes and/or segments 

representation (set via the CSTYPE param
entr

 
- In the old representation, contact segments are linear (2 nod
for 2D contact; 3- or 4 nodes for 3D contact). In the new 
representation, contact segments can be linear or qua
n
 

the contact segments which results in more accurate contact 
constraints.  

- The new representation uses a more accura
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 surface 
representation. 

  The new contact surfaces cannot be used with the following 
features: 
 

thms 
 
• Single-sided contact 
For single-sided contact, which is defined using NSIDE=1 
parameter on the BCTPARA card (see Fig. 4.1-3), one side of the 

f a target 
 be penetrating and will be moved back to the 

surface. This single-sided option is ideal for contact surfaces on the 
faces of solid elements since in that case it is clear that one side is 
internal to the solid while the other is external. In this case, the 
external side can usually be predicted from the geometry. This 
option is also useful for shells when it is known that contact will 

de of the contact 
surface. 

 
• Double-sided contact  
In double-sided contact, which is defined using NSIDE=2 
parameter on the BCTPARA card (see Fig. 4.1-4),  there are no 

ted from crossing from one side of the target contact 
surface to the other during solution. This option is more common 

r e of 
t time t, it will remain on the same side at time 

- The new representation generates more accurate contact 
constraints for 3-D contact segments resulting from 10, 11 node tet
elements and 20, 21 node brick elements. These elements generate 
zero (10, 11 node tets) or negative (20, 21 node bricks) contact 
forces at their corner nodes when subjected to a uniform contact 
pressure. 
 
- Tractions are reported as nodal quantities in the new

 

- Segment method algorithm 
- Rigid target algori

contact surface is assumed to be internal and the other side to be 
external. Any contactor node within the internal side o
surface is assumed to

definitely occur from one direction. In this case, however, the 
program cannot intuitively predict the internal si

internal or external sides. The contactor surface nodes in this case 
are preven

fo  shell-based contact surfaces. If a contactor node is one sid
the target surface a
t t+ ∆ . Note that double sided contact is only supported in 3-D. 
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Target
surface

External side

Internal side
(no contactor nodes allowed)

Figure 4.1-3: Single-sided contact surface  
 

 
 

Contactor node cannot
penetrate upper side

Contactor node cannot
penetrate lower side

Target
surface

Figure 4.1-4: Double-sided contact  
 

When the tied contact feature is selected for a contact set (TIED 
parameter in the BCTPARA card), Solution 601 performs an initial 
contact check at the start of the analysis. All contactor nodes that 

ct or overlapping are permanently attached 
to their respective target segments. Contactor nodes that are not in 

user-
RA 

d 
ints to attach the node to the target 

surface. The main difference is that the coefficients for the rigid 

 
• Tied contact 

are found to be in conta

contact are also set to be tied if the contact gap is less than a 
specified contact tolerance (TIEDTOL parameter in the BCTPA
card). This tolerance is useful when the contact gap is due to non-
matching finite element discretizations of the contacting surfaces. 
 The tied contact feature is conceptually similar to using Rigi
elements or multipoint constra
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elements are automatically determined by the program and they are 
only applied for the nodes that are initially in contact. The basic 
idea is illustrated in Fig. 4.1-5. 
 

Contactor surface

Target surface

Gap between
contact surfaces
(exaggerated)

Permanent rigid
ectionsconn

Figure 4.1-5: Tied contact option  

tension 

tible 

k 
t 

 

 are kept constant, as shown in Fig. 4.1-6. A target 
ap 

 
 

Tied contact is not "real" contact because there can be 
between tied contact surfaces. Also no sliding can occur between 
tied contact surfaces. 

The tied contact option can be used to connect two incompa
meshes. However, the mesh glueing feature described in Section 
5.9 produces more accurate results. 

If the contact surfaces initially overlap, they are not pushed bac
to eliminate the overlap. Similarly, if there is an initial gap it is no
eliminated. 

The tied contact constraint equations are computed based on the
initial nodal positions only. The constraints generated in tied 
contact are not updated during the analysis. Hence, the constraints 
will be inaccurate if the bodies experience large rotations. 
 
 • Small displacement contact 

If the small displacement contact feature is used (CTDISP = 1 in 
the NXSTRAT entry or DISP =1 in the BCTPARA entry), the 
contact constraints are generated once in the beginning of the 
nalysis anda

location is identified for each contactor node if possible, and its g
and normal direction are determined. The local coordinates of the 
target point and the normal direction are then kept constant for the 
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gion. For such problems, it is 
uch more computationally efficient to perform only one detailed 

remainder of the analysis. This is in contrast to the standard large 
displacement contact, where the contact constraints are updated 
every iteration, and the contactor nodes can undergo any amount of
sliding. 

This feature is useful when there is very little relative 
deformation around the contact re
m
contact search at the beginning of the analysis, rather than 
repeating the search every iteration. Also, in some cases, 
convergence can also be slow or unachievable with the general 
algorithm, for example as nodes oscillate between one target 
segment and another equally valid neighboring target segment. 
 
 

Contactor surface

Small displa
acceptable due to

x

N

x1

x1

x1

*

Original geom
point x1 an*

*

x1

x1

*x1

x

Target surface

Small displacement contact acceptableetry: Determine target
normal vector Nd

ce ent contact not
excessive displacement

Small displacement contact not
acceptable due to excessive rotation

m

1

*

1

Figure 4.1-6: Small displacement contact feature  

nodal contact tractions. Tractions are only generated 
n contactor surfaces. 

 
 

• Contact result output is controlled by the BCRESULTS Case 
Control command. The user can request output of nodal contact 

rces and/or fo
o
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4.2  Contact algorithms for Solution 601 

1 offers three contact solution algorithms (set via the 
he BCTPARA entry): 

 
 to one of these three contact 

g t 

 
4.2.1  Cons

• PARA card), 
constraint functions are used to 
fric na
 
fol in n
 

 

• Solution 60
TYPE flag in t
 
 f Constraint-function method, 
 f Segment (Lagrange multiplier) method, or 
 f Rigid target method 

• Each contact set must belong
al orithms. However, different contact sets can use differen
algorithms. 
 
• All 3 contact algorithms can be used with or without friction. 

traint-function method 
 

In this algorithm (selected using TYPE=0 on BCT
enforce the no-penetration and the 

tio l contact conditions.  
The inequality constraints of Eq. (4.1-1) are replaced by the 
low g ormal constraint function: 

 ( )
2

, g gw g λ λ
2 2 Nλ ε+ −⎛ ⎞= −

 
where εN is
in Fig. 4.2-
differentiable. The parameter εN  is set via the EPSN variable in the 

ever, this determination may 
ence EPSN=0.0 

+⎜ ⎟  
⎝ ⎠

 a small user-defined parameter. The function is shown 
1. It involves no inequalities, and is smooth and 

BCTPARA entry. The default value of 1.0x10-12 is suitable for 
most applications and should rarely be modified. 
 It is possible to set EPSN=0.0. In this case Solution 601 
automatically determines EPSN. How
not result in correct results for some problems. H
should not be used in general.  
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g

$

w(g, )$

Figure 4.2-1: Constraint function for normal contact  
 

 
• The constraint function method is also used to approximate the 

gid non-differentiable stick-slip transition of Eq. (4.1-3). This 

nvergence difficulties. 
 Two friction regularization algorithms are available in 

ear Solution. Both constraint functions take the 
r

ri
results in a smooth transition from stick to slip and vice versa, and 
it also results in a differentiable friction law that is less likely to 
cause co

Advanced Nonlin
fo m ( )v , 0u τ = . 
 The newer default algorithm involves a more accurate 
linearization of the frictional constraints and, in general, converg

uch faster than its predecessor. The v function is defined 
es 

T 

 
ly 

m
implicitly as a multilinear function as shown in Fig. 4.2-2. Here ε
is a small parameter (EPST parameter in the BCTPARA entry) 
which has the physical meaning of the "sticking velocity", that is, 
the maximum velocity corresponding to sticking conditions.
 In the old friction algorithm, the v function is defined implicit
via 

    
vv arctan 0

T

uτ
ε

⎛ ⎞2 −
+ − =⎜ ⎟π ⎝ ⎠

 

  
all parameter (EPST parameter in BCTPARA entry) 
s some elastic slip to the Coulomb friction law as 

Here εT is a sm
hich providew

shown in Fig. 4.2-3. Guidelines for selecting εT are provided in 
section 4.7.3. 
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Figure 4.2-2: Frictional contact constraint function for new friction

algorithm  
 
 

�

u
.

-1

-10 -2 -1 21 10

1

2
x
1_ _

" 
T

_

T

Figure 4.2-3: Frictional contact constraint function for old friction

algorithm  
 

parameter in the NXSTRAT entry. 
The old friction algorithm can still be accessed via the FRICALG 
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4.2.2  Segm ultiplier) method 
 

 
tor 
t 

 This method involves distinct sticking and sliding states. It also 

4.2.3  Rigid
  

fied contact algorithm (selected using TYPE=2 
n BCTPARA card). The algorithm is fully described in Section 

4.2.4  Selection of contact algorithm 
 

 Our experience is that in most frictionless contact problems the 
onstraint function method is more effective than the segment 
ethod. The constraint function method is the default. 

 For problems involving rigid targets, either the constraint 
nction or the rigid target algorithm can be employed. 

 
 Note that the target surface can be rigid in all three contact 

algorithms. The presence of a rigid target does not mean that the 
rigid target algorithm must be used.

4.3  Contact algorithms for Solution 701 

• Solution 701 offers three contact solution algorithms (set via the 
XTYPE flag in the BCTPARA entry): 
 
 f Kinematic constraint method, 
 f Penalty method, or 
 f Rigid target method 

 
 

ent (Lagrange m

• In this method (selected using TYPE=1 on BCTPARA card), 
Lagrange multipliers are used to enforce the contact conditions of
Eq. (4.1-1). The kinematic conditions are enforced at the contac
nodes, and the frictional conditions are enforced over the contac
segments. 
 
•
calculates this state for each contactor node based on the contact 
forces on the target segment. 

 
 target method 

• This is a simpli
o
4.8.  
 

•
c
m
 
•
fu

•
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 Each contact set must belong to one of these three contact 
lgorithms. However, different contact sets can use different 

 
ithout 

 
4.3.1  Kine

 

 algorithm for Solution 701. 

r 

•
a
algorithms. 

• All Solution 701 contact algorithms can be used with or w
friction. 

matic constraint method 

• This algorithm is selected by setting XTYPE=0 on BCTPARA 
card). It is the default explicit contact
 
• A predictor step is first done without applying contact 
constraints or forces. Then displacements are evaluated and 
penetration is detected and corrected. The exact correction of 
displacements requires the solution of a non-diagonal system of 
equations. Instead, a good approximation is done. In this case, fo
each penetrating contactor node, a penetration force 
 

*
2

N N N
C C C CM M

t
δ

= =
∆

F a N  

 
is calculated. This is the force required to remove the penetration
the contactor node. However, not all the penetration will be 
emoved by moving the conta

 at 

ctor. The target will get some motion 
epending on its mass relative to the contactor and how many 

i isplacement 
 t

no
 

r
d
contactor nodes are touching it. So, the N

CF  force above is 
projected to the target segment nodes: 
 

i

N N
T i CN=F F  

 
here N  is the shape function relating the contactor dw

to hat of each target node. Similarly, the mass of the contactor 
de is projected to the target in the same way: 

iT i CM N M=  
 

 the and this mass is added to that of the target node itself. Then
acceleration of the target node is determined as 
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( )N N

T T T TM M+ =
i i∑ ∑a F  

 
This correction is then used to update the target displacements. The 
contactor acceleration is  
 

*N N N
C C T iN= − ∑a a a  

 
 For friction, a similar approach is used. A correction force is •

calculated 
 

*T T
C CM

t
=

∆
vF  

 
where vT is the tangential sliding velocity. However, this force 
cannot exceed the limit force based on the normal force and the 
coefficient of friction 
 

( )*min ,T N
C C

Tµ=F F F  

mal 
n

 
e 

The form of the equations in this case depends 
 

 
4.3.2  Pena

 

C

 
The rest of the procedure is very similar to the case of nor
co tact. The form of the equations is different if there is damping, 
and is also different if the previous and current time steps are not 
the same. 

• A modification is also required for rigid targets, which ar
common in contact. 
on whether the rigid target has natural or essential boundary 
conditions. 
 
• The kinematic constraint algorithm should not be used when the 
target surface degrees of freedom are fixed. 

ty method l

• In this algorithm (selected using XTYPE=1 on BCTPARA 
card), contact conditions are imposed by penalizing the inter-
penetration between contacting surfaces. When a penetration is 
detected, a normal force of  
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( )N N D NA A K Kδ δ= = +F P N  

 
is applied to the contactor node, where KN is the normal stiffness, 
KD is a normal rate stiffness, δ  is the penetration, Nδ is the N

penetration rate, N is the normal vector pointing towards the 
traction. contactor, A is the contact area and P is the normal contact 

An opposing force is distributed to the target nodes. 
 
• Similarly, in the presence of friction, the relative sliding 
velocity between the two bodies is penalized as follows: 
 

min , T
T T T N

T

A K µ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

xF x F
x

 

 
where xT is the relative tangential sliding displacement. 

, 

 

ll lead to excessive 
penetrations, and unduly large penalty stiffnesses will lead to 
excessive oscillations or unstable explicit time integration. 

4.3.3  Rigid target m
 

n 

 

  
• The normal and tangential penalty stiffnesses KN and KT can be 
selected by the user, or determined automatically by the program 
based on the following BCTPARA parameters: XKN, XKNCRIT
XKT, XKTCRIT. The penalty rate stiffness KD can be explicitly 
selected by the user, or determined by the program as a ratio of 
critical damping for the contact node (using the XDAMP and 
XNDAMP parameters). 
 
• When penalty stiffnesses are automatically determined they are
chosen based on the masses of the contactor nodes and the time 
step. They are selected such that they have a minimal effect on the 
existing time step. 
 Note that unduly small penalty stiffnesses wi 

 
ethod 

• This algorithm is similar to the rigid target method used i
Solution 601. It is selected using XTYPE=3 on the BCTPARA 
card. The algorithm is fully described in Section 4.8. 
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4.3.4  Selec
 

 

 The penalty method is the simplest and fastest of the explicit 
contact algorithms. It can also handle rigid contactor and target 

de to be in contact with 
multiple targets simultaneously. 

 
cillations can usually be removed by 

sing penalty damping. It is also sensitive to the choice of the 

nd oscillations, and if it is too small it leads to excessive 

, in 

4.4  Conta

urface offsets 
e 

e 
 case of double-sided contact, the offset creates two 

A 

tion of contact algorithm 

• The kinematic constraint method is the default in Solution 701. 
 
•

surfaces. It also allows a contactor no

 
• The main disadvantage of the penalty method is that contact 
conditions are not exactly satisfied and it usually shows oscillations
in contact forces. These os
u
penalty stiffness. If that stiffness is too large it leads to instability 
a
penetrations. 
 
• The default penalty stiffness selected by Solution 701 is
most cases, a suitable compromise. 

ct set properties 

This section describes the main options available for contact sets. 
 
 Contact s•

Penetration of a contact surface occurs when the plane or lin
defined by the contact segment nodes is penetrated. However, an 
offset distance can be specified which causes the actual contact 
surface to be offset from the plane defined by the contact surfac

odes. In then
separate surfaces above and below the reference surface. Note that 
if the contact surface is on a shell then half the shell thickness can 
automatically be used as the offset (OFFTYPE=2 in the BCTPAR
entry). Fig. 4.4-1 shows the possibilities for single and double-
sided contact. Note that the offset distance should be small 
ompared to the contact surface length.  c

 Offsets for a whole contact set are specified via the OFFSET 
parameter in the BCTPARA entry, while offsets for a specific 
contact surface are set via the OFFSET parameter in the 
BCRPARA entry. If one of the contact surfaces has a defined 
offset, it will overwrite the contact set offset. 
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Internal side Defined contact
surface

Defined contact surface

Actual contact
surface

Actual contact
surfaces

ed contact
IDE=1, OFFSET=t on BCTPARA card)

Offset

t
t

Of

Offset

(a) single-sid
(using NS

(b) double-sided contact
(using NSIDE=2, OFFTYPE=1, OFFSET=t on BCTPARA card)

t

fset

Figure 4.4-1: Contact surface offsets  

The use of contact surface offsets in double-sided contact is not 
recommended. 
 
• Continuous normals (Solution 601 only) 
The normal direction to a contact segment will in general not be 
continuous between segments as illustrated in Fig. 4.4-2. This 
sometimes causes convergence difficulties due to the non-unique 
normals at nodes and segment edges. The continuous normals 
feature first calculates nodal normals as averages of all the normals 
from the attached segments, and then interpolates these nodal 
normals across the segment. This leads to a uniformly varying 
normal direction.  
 

 

Nodal normals

(a) Discontinuous normals (b) Continuous normals

Figure 4.4-2: Contact surface normals  
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 The SEGNORM parameter in the BCTPARA card determines 
the setting for continuous normals. Continuous normals 
(SEGNORM=1) is the default for single-sided contact, and 
discontinuous normals (SEGNORM=-1) is the default for double-
sided contact.  
 In modeling target surfaces with sharp corners, either use 
discontinuous normal vectors, or use small segments near the 
corners, in order that the normal vectors for segments near the 
corners be computed correctly. See Section 4.7.2 for modeling tips 
related to this feature. 
 Continuous normals give poor results with explicit time 
integration. Therefore, they are blocked from Solution 701. 
 
• Contact surface depth 
By default, the contact region extends for an infinite distance below 
the contact surface (for single-sided contact). However, a contact 
surface depth can be defined (by setting the PDEPTH parameter in 
the BCTPARA card), below which the contact surface is no longer 
active. The default PDEPTH=0.0 results in an infinite contact depth 
extension. Fig. 4.4-3 shows some of the possibilities. 

 
 
 
 
 
 

A B

C
G

D

E
F

Contact surface is used in self-contact.

Continuum created
y

Figure 4.4-3: Contact surface depth.

b segment A-B

A B

C

E
F

a)

PDEPTH

D
GTarget depth

Nodes F and G have not
penetrated segment A-B.

Nodes F and G have
penetrated segment A-B.

b) Target depth option used

 

Target depth option not used
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rations in Solution 601 is governed by 
e INIPENE parameter in the BCTPARA entry. By default, if 

 

 

the 
inated in a single step. 

The program can also calculate initial penetrations at the start of 
m 

ount of 
4 

 tips 

(set via the initial penetration flag 
IPENE=3 in BCTPARA), the gaps and penetrations calculated 

d 

er a 

 for problems involving curved meshes in 
close proximity, such as the shrink fit example shown in Fig. 4.4-5. 

he gaps and penetrations measured from the discretized finite 
lement mesh are sometimes inaccurate for such problems (unless 

 such as that shown 
in the figure, a constant geometry based overlap should be applied 

 

nsity would have to be used if gap override is not used. 

• Initial penetration 
The treatment of initial penet
th
there is initial overlap (penetration) between a contact node and a
target segment in the first solution step, the program attempts to 
eliminate the overlap. Advanced Nonlinear Solution can eliminate
the overlap at the first step or over a user-specified time using the 
TZPENE parameter in BCTPARA. This feature is useful if 
initial penetrations are too large to be elim
 
solution and ignore them in future steps. In this case the progra
does not detect penetration for a contactor node if the am
penetration is less than or equal to the recorded amount. Fig. 4.4-
shows some of the possibilities. See Section 4.7.2 for modeling
related to this feature. 
 Initial penetrations can also be set to gap override (see below). 

 
• Gap override 
In the gap override feature 
IN
from the finite element mesh are replaced by a fixed user-specifie
value (GAPVAL parameter in the BCTPARA entry). A positive 
value represents an initial gap, zero means that the contact is 
touching the target, and a negative value represents an initial 
penetration (which can be removed either immediately or ov
user-specified time as explained in the Section on initial 
penetration above). 
 This feature is useful

T
e
matching meshes are used). In some problems,

to all nodes, which corresponds to a gap override value of –δ. 
 Note that mesh refinement and quadratic elements reduce the
error in the measured overlaps but frequently a very high mesh 
de
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Continuum

Target surface

Contactor node

Solution start, contactor node
initially penetrates target surface

First solution time,
overlap is eliminated

Overlap is gradually eliminated

Figure 4.4-4: Initial penetration options

First solution time,
overlap is recorded

Overlap
distance

Eliminate penetration

INIPENE = 0, TZPENE = 0.0

INIPENE = 0, TZPENE > 0.0 INIPENE = 2

Ignore penetration
Eliminate penetration

over time period

 
 
 
 Note also that the error in mesh based gaps and penetrations for 
curved surfaces can be more significant when low precision 
numbers are used for the node coordinates (such as when short 
input file format is used). Gap override is also useful for such 
cases. 
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Proper initial overlap at

all nodes should be %

Directly measured overlaps
are incorrect at most

Two rings with a geometric overlap (shrink fit)%

nodes

Figure

 
 

ntact (via the EXTFAC parameter on the 
C

the CFACTOR1 parameter 
ailable with the constraint 

y 

imulate soft or compliant surfaces. The amount of allowed 

4.4-5: Significance of gap override for curved non-matched
geometries

• Contact surface extension 
The target surface can be enlarged beyond its geometric bounds, so 
that contactor nodes that slip outside the target can still be 
onsidered in coc

B TPARA card). This feature is useful where the edge of the 
contactor and target surfaces coincide, as shown in Fig. 4.4-6. Each 
target segment is enlarged by an amount equal to the contact 
surface extension factor multiplied by the length of the segment. 

 
 Contact surface compliance (Solution 601 only) •

Contact surface compliance is set via 
on the BCTPARA card and is only av
function algorithm in Solution 601. Contact surfaces are commonl
assumed to be rigid meaning that no interpenetration is allowed. 
This situation corresponds to a contact surface compliance of 0.0. 

owever, the contact surface compliance feature can be used to H
s
interpenetration between the contacting surfaces in this case is 
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Extended target
surface

Target
surface

L
e

e = L contact surface extension�

Corner contactor node may slip
outside bounds of target due to
numerical round-off, or lateral
displacements

Figure 4.4-6: Contact requiring contact surface extension  
 
 
 
  penetration normal contact pressp ureε= ×  (4.4-1) 

s 

 

 
where 
 
 normal contact pressure = normal contact force / contact area 
 
The constraint function in the presence of a compliance factor i
modified as shown in Fig. 4.4-7. A is the contact area. 
 

1

g



P
/A

$

Figure 4.4-7: Constraint function for compliant contact  
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• Consistent contact stiffness (Solution 601 only) 
he consistent contact stiffness feature s set via the parameter 

e 
 rates 

he 

 
nuous 

erivation assumes that 
the contact normals are discontinuous. 
 The consistent contact stiffness feature is not used when the 

. 

ontact birth feature activates a contact set at a specific time, 

re set via the TBIRTH and TDEATH parameters on 

less 

 be useful in many problems, since it delays the non-

ontact at time t+∆t. That velocity depends on the exact time at 
which contact started, which is somewhere between times t and 

tion is equivalent to assuming 
to time t+∆t, and hence the 

locity is zero and so is the frictional force. 

T i
CSTIFF on the BCTPARA card. Changes in the direction of the 
contact normal provide an additional contribution to the stiffness 
matrix that is proportional to the value of the contact force and th
change in the normal direction. Therefore, higher convergence
(closer to quadratic) can sometimes be obtained by selecting t
consistent contact stiffness option which accounts for these 
additional stiffness contributions. This results, however, in an 
increase in the size of the stiffness matrix which is detrimental for
large problems. This option is more beneficial when disconti

als are selected, because the dcontact norm

target surface is rigid. 
 Consistent contact stiffness is not used in dynamic analysis
 
• Contact birth/death 

he cT
while the contact death feature disables a contact set at a specific 
time. They a
the BCTPARA card. A 0.0 birth time means that the contact set 
starts active at the beginning of the analysis, and a death time 
than or equal to the birth time means that the contact set does not 
die. 
 
• Friction delay (Solution 601 only) 
When the friction delay feature is activated (FRICDLY parameter 
in the BCTPARA entry), frictional conditions are applied to a 
contactor node one time step after contact is established. This 
feature can
linearity associated with friction until contact is established.  
 Note that the relative sliding velocity cannot be uniquely 
determined when a node was not in contact at time t, and is in 
c

t+∆t (see Fig. 4.4-8). Delaying fric
that contact was established close 
sliding ve
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Time = t

t+2 t�

Friction delay

non-uniqueunique x1 R1 R

x1 R= Relative sliding veloci
.

. t+ t�t+2 t�

t

t+ t�

t+�

t+2 t�

t+ t�t+2 t�

FNFN
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x
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.
= 0

t+ t�

t

FT

t

Figure 4.4-8: Friction delay feature  

4.5  Frictio

ral Coulomb type friction 
o

01 

4.5.1  Basi

d for 

 
4.5.2  Pre-

 
ead 

f constant Coulomb friction. The friction law and its input 
arameters are set via the BCTPARA entry. The following 
ariables are used in the friction laws: the magnitude of the relative 

sliding velocity  the contact traction  the consistent contact 
force  the current nodal coordinates x, the direction of sliding v, 
and the time t. The setting for the FRICMOD parameter required 
for each friction law is given in parentheses. The A1 through A5 

n 

Advanced Nonlinear Solution has a gene
m del, where the coefficient of friction µ can be a constant or 
calculated based on several pre-defined friction laws. Solution 7
however, only supports standard Coulomb friction. 
 
c friction model 

 
By default, a constant coefficient friction is used. It is specifie
each contact pair via the BCTSET entry. 

defined friction models (Solution 601 only) 

One of the following predefined friction laws can be used inst
o
p
v

 ,u ,nT
,nF
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constants used in the predefined friction laws are set up via 
FPARA1 through FPARA5 parameters in BCTPARA. 

 
• Constant coefficient of friction (FRICMOD = 1) 

 

1Aµ =  
 

• Different static and dynamic friction coefficients  
 (FRICMOD = 4) 

 

1 3

2 3

if 
if 

A u A
A u A

µ
≤⎧

= ⎨ >⎩
 

 
• Friction coefficient varying with sliding velocity  
 (FRICMOD = 5) 

 

1 3 1
2

3 2

( ) if 

if 

uA A A u
A

A u
µ

⎧
2A

A

+ − <⎪= ⎨
⎪ >⎩

 

 
pic friction model (FRICMOD = 6) • Anisotro

 
2( ) (A A⎧ 2 2

1 (1) 2 (2) 3 (3) 5) ( ) if A u A
µ

4 5if A u A

+ + >
=

v v
 

 

 

⎪ v
⎨

≤⎪⎩
 

where v(1), v(2) and v(3) are the x, y and z components of the sliding 
direction. 

• Friction coefficient varying with consistent contact force 
(FRICMOD = 7) 

A A1 2 , 0 1nFµ = + µ≤ ≤  

 Time varying friction model (FRICMOD = 8) 
 

•

1 3 1
2

3 2

( ) if 

if 

tA A A t
A

A t
µ

⎧
2A

A

+ − <⎪= ⎨
⎪ >⎩
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• Coordinate-dependent friction model (FRICMOD = 9) 
 

≤

 
• Friction model 1a (FRICMOD = 2) 

 

1 3 (1) 4 (2)
2

1 3 (1) 4 (2) 5 (3)

in 2D
, 0

in 3D
A A A

A
A A A A

µ µ
+ +⎧

= ≤⎨ + + +⎩

x x
x x x

 

2

1

1 exp( )n

n

A T
T A

µ − −
=  

  
• Friction model 1b (FRICMOD = 12) 

 
2

1

1 exp( )n

n

A F
F A

µ − −
=  

 
• Friction model 2a (FRICMOD =3) 

 
2 2 1 3( ) exp( )nA A A A Tµ = + − −  

 
• Friction model 2b (FRICMOD = 13) 

2 2 1 3( ) exp( )nA A A A F
 

µ = + − −  
 

4.5.3  Frict n

 

io al heat generation 
 

The heat generation resulting from frictional contact can be 
accounted for in a coupled TMC analysis. The user selects the 
fractions of the generated heat going into the contactor and target 
surfaces via the TMCFC and TMCFT parameters in the BCTPARA 
entry. If these two fractions do not add up to 1.0 the remaining 
portion is assumed to be lost. 
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4.6  Contact analysis features 

4.6.1  Dynamic contact/impact 
  
For Solution 601 
• Oscillations in velocities and accelerations can sometimes be 
present in implicit dynamic contact analysis especially for high 
speed impact problems. These oscillations can be reduced by  
 
 - applying post-impact corrections,  
 
 - setting the Newmark parameter α = 0.5, 
 
 - adding compliance to the contact surfaces, 
 
 - using the Bathe composite time integration method. 
 
• In post-impact corrections, the velocities and accelerations of 
the contactor and target can be forced to be compatible during 
contact (only in the norm l contact direction). This feature is 
ctivated by setting IMPACT = 1 in the NXSTRAT entry. This is 

fying the velocities and accelerations of the 
e convergence is reached such that they satisfy 

 

gether 

a
a
achieved by modi
contact nodes onc
conservation of linear and angular momentum. 
 The post-impact correction option requires additional memory
and computations. 
 The post-impact correction feature should not be used to
with compliant contact surfaces, since the velocities and 
accelerations of the contactor and target surfaces are no longer 
expected to be identical. 
 If post-impact correction is activated, all target nodes, except 
those with all degrees of freedom fixed or enforced displacements, 
must have a positive non-zero mass. The contactor nodes can have 
zero mass. 
 
• Setting the Newmark α = 0.5 instead of the default α = 0.25 
(trapezoidal rule — see Section 6.3) results in an accurate solution 
of rigid body impact problems, and frequently has a positive effect 
on reducing numerical oscillations in flexible body contact. This 
feature can be activated by setting IMPACT = 2 in the NXSTRAT 
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the NXSTRAT entry. 
 is, however, recommended that the Bathe composite method be 
sed instead, whenever possible. 

 Adding compliance to the contact surface can also significantly 
duce the numerical oscillations that result from dynamic time 
tegration. This is done by setting a non-zero CFACTOR1 in the 
CTPARA entry. In this case, the compliance factor must be 

elected based on Eq. (4.4-1) such that the contact pressures do not 
cause excessive penetration. Allowing penetration of the order of 
1% of the element size usually eliminates numerical oscillations. 
 
• The Bathe composite time integration method provides some 
numerical damping to the high frequency content of the solution, 
which includes the contact oscillations. 
 
For Solution 701 
• Oscillations in velocities and accelerations can sometimes be 
present in explicit dynamic contact analysis especially for high 
speed impact problems. These oscillations are more common with 
the penalty contact algorithm. In that case, they can be reduced by  
 
 - reducing the normal penalty stiffness, 
 
 - adding penalty contact damp g. 
 
See Section 4.3.2 for details on the explicit penalty contact 
algorithm. 
 In addition, other sources of damping such as Rayleigh damping 
can reduce contact oscillations by damping the high frequency 
modes that generate them. 
 
• Oscillations in results can also occur when using the kinematic 
constraint algorithm. These oscillations can be due to a mismatch 
in the masses of the two contacting surfaces. See section 4.7.3 for 
more details. 
 
 
 

entry, or by changing ALPHA to 0.5 also in 
It
u
 
•
re
in
B
s

in
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4.6.2  Cont
 

 
prevent the contactor nodes from penetrating the target segments. 
During each equilibrium iteration, the most current geometry of the 
contactor and target surfaces is used to determine and eliminate the 
overlap at the contactor nodes. 
 
 

ntact search, followed by a 
penetration calculation. The contact search starts by identifying all 
possible target surfaces where node k can come into contact. For 
each of these target surfaces: 

gments at ached to
 

 
  - If node k is in contact, update the information. 

e target segments attached to node 
n.  

 
• For double-sided contact, the contact search algorithm uses time 

 

 
4.6.3  Supp

• In some problems contactor nodes may oscillate during 
quilibrium iterations between several (usually two) neighboring 

a non-zero NSUPP parameter in the NXSTRAT 
entry. In this case, the program records the pairing target segment 

act detection 

• As explained earlier in this chapter, the contact conditions

• For single-sided contact, the calculation of overlap at a 
contactor node k consists of a co

 
  - Find the closest target node n to node k.  
 
  - Find all the target se t  node n. 

  - Determine if node k is in contact with any of these 
segments.  

 
  - If the new contact surfaces are used, and no appropriate 

target segment is detected, the contact search is 
expanded beyond th

tracking and checks whether the contactor node penetrated a target
segment between times t and t + ∆t. 

ression of contact oscillations (Solution 601) 
 

e
target segments. Frequently, both solutions are acceptable. A 
special procedure can be used to prevent such oscillations. This is 
done by selecting 

for each contactor node in the previous NSUPP iterations. Once 
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ce is 

ed 
t 5 less than the 

a

e, 

 
4.6.4  Restart with contact 

 

For this purpose, the contact algorithms can be 
 includes the 

constraint function (implicit), Lagrange multiplier segment 
(implicit), kinematic constraint (explicit), and penalty (explicit). 
Restarts are possible between different algorithms in this category. 

t 

4.6.5  Contact damping 
 
• The contact damping feature allows the user to add normal and 
tangential grounded viscous dampers to all contactor and target 
nodes in the model. The damping is activated via the CTDAMP 
parameter in NXSTRAT, and the normal and tangential damping 
coefficients are CTDAMPN and CTDAMPT. Using the same value 

this array is full, and the contactor node is still in contact, and the 
pairing target segment is one of those recorded in previous 
iterations, the suppression feature is activated. The contactor node 
from this iteration onwards is associated with only that target 
segment. It may remain in contact with the segment, or in contact 
with an infinite plane passing through the segment, or it can
separate from contact completely. The node is released from its 
restrictions once iteration ceases, either because convergen
reached, or due to non-convergence. 
 
• If this oscillation suppression feature is used, it is recommend
that NSUPP be set greater or equal to 5 and at leas
m ximum number of iterations. 
 
• Note that there is memory overhead associated with this featur
where an integer array of size NSUPP is defined for all contactor 
nodes. 

 
• Changes in contact parameters are allowed between restarts,
with some exceptions. Some restrictions exist, such as no restart 
from friction to frictionless and vice versa. 
 
• The contact algorithm itself for a certain contact set can also 
change in a restart. 
divided into two categories. The first category

The second category includes the implicit and explicit Rigid Targe
algorithms. Restarts are possible between these algorithms. 
However, restarts are not allowed between the two categories. 
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for both normal and tangential direction results in isotropic viscous 
damping. The damping force on each node is 
 

Damp N N T TC C= +F u  u
 
• This damping can be useful in static problems for stabilizing the 
model especially when there are insufficient boundary conditions to 
remove rigid body modes. It can also be useful in dynamic analysis 
to dampen out high frequency numerical oscillations. The damping 
can be set to act only at the initial time step, or to be constant 
throughout the analysis. 

 Using the initial damping option, the damping will be active at 

ll 

e 

g 

4.7  Mode

4.7.1  C nt ct
 

es in 
ct on the 

olution. However, for many cases, one of the two alternatives is 
better. 
 
• If it is more important for the nodes of one surface not to 
penetrate the other, then that surface should be the contactor. This 

 
•
the beginning of the first time step, and will be reduced gradually 
(between iterations) until it fully dies out by the end of the first 
time step. Thus the final solution at the first time step will be free 
of any damping. Note that if contact is not established and nothing 
else stabilizes the model, the program will not converge and wi
give an appropriate warning message. 
 
• Constant damping remains active throughout the analysis. In 
this case, the program outputs the sum of all damping forces in th
output file, and the user must check that these forces are 
significantly smaller than the sum of the reaction forces (also 
written to the output file). 
 See Section 4.7.6 for modeling hints on using contact dampin
to handle improperly supported structures and how to choose the 
damping constants.

ling considerations 

o a or and target selection 

• For some contact problems, the contactor and target surfac
 contact pair can be interchanged without much effea

s
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factor is usually important when one surface has a much coarser 
mesh than the other as shown in Fig. 4.7-1. The coarse surface 
should preferably be the target in this case. A related condition 
occurs around corners or edges as shown in Fig. 4.7-2. The upper 
surface should preferably be the contactor in this case. 
 
• If one of the surfaces has mostly dependent degrees of freedom, 
it should be the target. This dependency can be due to boundary 
conditions, constraints or rigid elements. The surface can also be 
rigid if its nodes are not attached to any elements. In that case too it 
has to be the target (except in the explicit penalty algorithm where 

is is permitted). 

 

th
 
• If one surface is significantly stiffer than the other, it should 
preferably be the target, unless one of the two conditions above 
also exist. 
 
 
 
 
 
 
 

Contactor nodes
Target segments

Body 1 (contactor)

Figure 4.7-1: Effect of incorrect contactor-target selection due to
mesh density  

Body 2 (target)
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Contactor
surface

Target
surface

Figure 4.7-2: Target selection for surfaces of different sizes 
 
 

4.7.2  General m deling hints 
 

ced Nonlinear Solution automatically defines the 
direction of the contact surfaces on the faces of solid elements 

hells 
 that 

except 

s of 
ing 

uld be set to COATING in BCRPARA. The program 

o 
 all 

active degrees of freedom. As a result, a fine discretization of a 
geometry is possible with only a small 

increase in the solution cost. 

o

• Advan

(defined using the BSURFS or BCPROPS entries in 3-D or 
BLSEG entry in 2-D). For target contact surfaces defined on s
(using the BSURF or BCPROP entries) the user has to ensure
the correct direction is defined using the BCRPARA entry (
when double-sided contact is used). 
 
• In some cases, even though the contact surface is on the face
3D solid elements, it is more convenient to define the surface us
shell elements. In this case, fictitious shell elements should be 
defined and referenced in the BSURF or BCPROP entries, and 
TYPE sho
will automatically transfer the contact surface to the underlying 
solid elements and delete the fictitious shell elements. 
 
• Rigid target surfaces can be modeled using nodes with n
degrees of freedom or nodes with enforced displacements for

complex rigid surface 
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 for 3-D contact surface definition all require the 
ontact surface nodes to be connected with 3-D solid or shell 

ents 
re 

ched to a rigid 
ontact surface. A contact surface is deemed rigid if: 

r node that 
ks 
id 

s of segments on the 
contactor and target surfaces be approximately equal. This is 

articularly important if multiple contact surface pairs are 
onsidered in the analysis or if the contact surface geometries are 

st rigid 

ess of 
e 

ce are 
ment (see 

 
e contact surface. 

 

• The commands
c
elements. Therefore, to model a rigid target, dummy shell elem
should be used to define the surface. These shell elements a
removed from the model if they are found to be atta
c
 
f it is the target of a contact pair in a contact set using the rigid 
target algorithm, or 
 
f the TYPE flag in the BCRPARA entry is set to RIGID. 
 

• If the contact surface is rigid the MGP parameter in the 
BCRPARA command can also be used to define a maste
will control the motion of the rigid surface. Internally, rigid lin
are created between the master node and all the nodes on the rig
target. 
 
• In general it is recommended that the length

p
c
complex. 
 
• If required, a contactor surface can be modeled as almo
by choosing a reasonably high Young's modulus for the finite 
elements modeling the contactor surface. However, the stiffn
the surface elements should not be excessively high and make th
model ill-conditioned. 
 
• If the degrees of freedom of a node on a contactor surfa
used in constraint equations or attached to a rigid ele
Section 5.8), the contactor node degrees of freedom should 
preferably be independent. 
 
• If a contactor node has all of its translational degrees of freedom
dependent, the node is dropped from th
 
• If the contact surfaces are smooth (i.e., the coefficient of friction
is small), the frictionless model is recommended as it is less costly 
to use. It is also recommended that prior to any contact analysis 
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sible. 

 
y 

 

 

 

oscillating between one target to 
r, to 

elay feature can sometimes lead to better 
tact 

 
• Restarting from frictionless contact to contact with friction and 
vice versa is not possible. However, it can be done if the 
frictionless analysis is replaced by a frictional analysis with a very 
small friction coefficient. 
 
• Ignoring initial penetrations is a useful option when these 
penetrations are just a product of the finite element discretization, 
meaning that they do not exist in the physical model. Fig. 4.7-3 
illustrates one such case involving contact between concentric 
cylinders. In this situation, if initial penetrations are eliminated, the 
contact algorithm will try to push the penetrating contactor nodes to 
the target surface segments in the first step, creating initial 
prestressing. These initial penetrations and any prestressing that 
they might cause are unrealistic. Ignoring them is useful in this 

involving friction, the frictionless solution is first obtained, 
whenever pos
 
• It is not recommended that contact pairs with friction coexist 
with contact pairs without friction in the same contact set. 
 
• A contactor node should preferably not belong to more than one
contact surface in a contact set, otherwise the contactor node ma
be over-constrained. 
 
• For problems in which the contactor and target surfaces are 
initially relatively close to each other and no significant sliding 
between these surfaces is expected throughout the analysis, the
small displacement contact feature may be used. The analysis will 
be faster in this case, since the relatively time consuming contact
search is only performed once, and convergence difficulties 
associated with a contactor node 
another are eliminated. It is the user’s responsibility howeve
make sure that the problem is suitable for small displacement 
contact. 
 
• The friction d
convergence since friction will only act once a converged con
solution is established. This feature is also very useful for many 
problems involving initial penetrations. In this case, the first time 
step during which these initial penetrations are removed will be 
frictionless. 
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case. Note however, that if either cylinder is significantly rotated 
the initial penetrations calculated at each contactor node (in the 
initial configuration) will no longer be valid. In this case, the best 
alternative would be to use a much finer mesh. 

 
 

Target surface,
marked with

Contactor surface,
marked with

Geometry before
discretization

Overlap to ignore

Outer cylinder

Inner cylinder

Figure 4.7-3: Analysis of contact between concentric cylinders,
initial penetration is ignored  

 
 
• When higher order elements are used in contact, specifically the 
10-node tetrahedral and the 20-node brick elements, tensile 
consistent nodal contact forces can develop even when the 

re
via the TNSLCF flag in NXSTRAT. Accepting these tensile forces 
giv

 

underlying contact tractions are compressive. The program can 
accept such tensile forces as if they are comp ssive. This is done 

es more uniform results for problems involving the above 
mentioned elements. However, it may slow down or even prevent 
convergence in other problems. It is off by default. 
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4.7.3  Modeling hints specific to Solution 601 
 

 

. 

 
ric n 

 

ore acc
ulties. 

ent 

s, for problems involving such 
features, the load steps should be small. The time step ∆t should 
also be small in dynamic analysis and when time dependent 

exible option can be used. In this case, the rigid element does not 
create any dependent degrees of freedom This feature is activated 
via the EQRBAR and EQRBE2 flags in the NXSTRAT entry. 

• It is recommended that the ATS method be used in contact 
analysis (see Section 6.2.4). It can also be effective to use the low-
speed dynamics option of the ATS method (ATSLOWS parameter
of the NXSTRAT entry). 
 
• Line search can sometimes be beneficial for contact problems
 
• Frictional contact problems using the constraint function 
algorithm can be sensitive to the choice of f tional regularizatio
constant (EPST parameter in BCTPARA entry). For most 
problems, this parameter should be one or two orders of magnitude
smaller than the expected sliding velocity. Using an excessively 
large value leads to a smoother friction law, which generally 
converges faster but results in smaller frictional forces or more 
sliding. Using an excessively small value enforces the Coulomb 
law m urately but is more likely to experience convergence 
diffic
 
• Friction is not regularized or smoothed in the Lagrange 
multiplier segment algorithm. This results in accurate enforcem
of stick and slip, but is more likely to experience convergence 
difficulties. 
 
• Geometric and material nonlinearities can highly depend on the 
sequence of load application. Thu

material constitutive relations (e.g., creep) are used. 
 
• If rigid elements are connected to contact surface nodes, the 
fl

. 
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curate 
ti ous 

 
 

 

• If a contact surface with corners or edges is modeled with 
continuous contact normals, the normal vectors may be inac
as shown in Fig. 4.7-4(a). In this case, switch to discon nu
normals, use different contact surfaces for each smooth part      
(Fig. 4.7-4(b)) or use a fine mesh close to the corners or edges  
(Fig. 4.7-4(c)). 
 

 

 
 

Contact surface
with sharp corners

Contact surface 1

Contact
surface 1

Contact
surface 3

Con surface 1
fine

vectors poin o exterior side

Contact surface 2

tact
(with

corner mesh)

Arrows correspond to normal
ting t

a) Single contact surface

b) Three separate contact surfaces c) Single contact surfaces with
fine mesh at corners

Figure 4.7-4: Defining contact surfaces (with continuous normal
vectors) in the presence of corners  
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4.7.4  Modeling hints specific to Solution 701 
 

• The penalty algorithm is preferred when both surfaces are rigid 
r have many fixed or prescribed nodes. 

g 
. T  be 

. 

ve penetrations, while 
unduly large penalty stiffnesses will lead to excessive oscillations 
or unstable time integration. 

• Large mismatches between the masses of contacting surfaces 
constraint met

This mismatch is common when contact involves a rigid surface 
n applied force, as shown in Fig. 4.7-5. The 

est solution in such cases is to minimize the mismatch by 

 contact is 
nforced. The kinematic constraint method first predicts 

displacements without contact then applies a contact correction. 
The contact conditions are satisfied more accurately when the 
penetrations in the predicted configuration are small which is 

sually the case due to the small time step size of explicit analysis. 
owever, some cases such as that mentioned above lead to large 

 

 contacting surfaces 
an also lead to problems when using the penalty method. In this 

 rigid surface, 
r increase the penalty stiffness by setting it manually or by 

o
 
• Large oscillations in the contact forces may occur when usin
the penalty method even though the model is stable hese can
reduced by reducing adding a penalty damping term and/or 
reducing the penalty stiffness
 
• When using the penalty contact algorithm it is important to 
check that the contact stiffnesses are properly selected. Unduly 
small penalty stiffnesses will lead to excessi

 

should be avoided when using the kinematic hod. 

with a small mass and a
b
increasing the mass of the rigid surface. 
 
The inaccuracy in this case results from the way the
e

u
H
projected penetrations which results in incorrect contact conditions
and tensile contact forces. 
 
• Large mismatches between the masses of
c
case, the normal penalty stiffness required to avoid instability 
(without reducing the time step) can be unduly small leading to 
excessive penetrations. The best solution in such cases is to 
minimize the mismatch by increasing the mass of the
o
reducing the time step. 
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F

One node
in contact

Tensile forces

Small mass assigned to rigid surface

Correct solutionOriginal configuration

Pr
(be

rong contact
region

W

Final configuration
ojected configuration
fore contact correction)

Fig contact algorithm when
contact surfaces have a large mass mismatch  

 
 

4.7.5  Conver
 

•  i remental 
nalysis, the intermediate printout given by Solution 601 in the 
utput listing can provide some useful information (see Fig. 4.7-6). 

rion, the displacement and rotation convergence 
riterion (boxes b and c), and the force and moment convergence 

cri
top
equ e 
thi
and

ure 4.7-5: Performance of kinematic

gence considerations (Solution 601 only) 

When Solution 601 fails to converge during the nc
a
o
  
• Three non-contact related norms are given: first, the energy 
convergence crite
c

terion (boxes d and e). Each box has 3 lines of output with the 
 one giving the norm of the quantity, the second one giving the 
ation number corresponding to the maximum value, and th

rd line giving the maximum value. See Chapter 6 for definitions 
 more details on these norms. 
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TN. CFORCE ...

-DOF CFNORM ...

MAX VALUE MAX VALUE MAX VALUE MAX VALUE

ITE=

36-Z 35-X 31-Z 31-X 0.00E+00 ...

ITE= +03 ...

15 ...

ITE= 2 3.32E-04 2.51E+01 1.88E-04 1.80E-02 1.77E-01 1.95E+03 ...

E-03 1.17E-02 1.95E+03 ...

33-X 2.00E+03 ...

3.21E+02 5.15E-04 -1.33E-04 -7.92E-03

... CONVERGENCE RATIOS CONVERGENCE RATIOS OUT-OF-BALANCE LOAD

... FOR OUT-OF-BALANCE FOR INCREMENTAL VECTOR CALCULATION

... ENERGY FORCE DISP. CFORCE BETA RATIO

... MOMENT ROTN. (ITERNS)

COMPARE WITH COMPARE WITH

...

...

...

... 3.85E+01 1.92E-02 5.08E-03

... 1.88E-04 0.00E+00 ( 9)

8.18E-04 0.00E+00 ( 2)

OUT-OF- NORM OF ...

BALANCE OUT-OF-BALANCE NORM OF INCREMENTAL ...

ENERGY FORCE MOMENT DISP. RO

NODE-DOF NODE-DOF NODE-DOF NODE

box b box c box d box e box f

0 1.14E+00 1.41E+02 9.99E-17 5.35E-02 5.12E-02 1.27E-15 ...

-1.00E+02 4.71E-17 -5.68E-03 -3.30E-02

1 -1.29E-03 2.56E+01 1.92E-04 1.56E-02 2.45E-01 2.65E

121-Z 31-X 64-Z 34-X 1.27E-

-9.85E+00 -1.06E-04 5.07E-03 1.26E-01

117-Z 31-X 64-Z 32-X 5.08E+01 ...

-9.66E+00 -1.04E-04 4.97E-03 -9.02E-02

ITE= 3 7.69E-02 4.46E+02 8.18E-04 1.04

64-Z 34-X 120-Z

ETOL RTOL DTOL RCTOL

1.00E-03 1.00E-02 (NOT USED) 5.00E-02

... 1.00E+00 1.41E+01 0.00E+00 1.27E-05

9.99E-17 0.00E+00

-1.00E+02 4.71E-17 -5.68E-03 -3.30E-02

-9.69E-03 2.56E+00 0.00E+00 2.65E+05 1.00E+00 -5.54E-02

1.92E-04 0.00E+00 ( 1)

2.49E-03 2.51E+00 0.00E+00

...

...

5.76E-01 4.46E+01 0.00E+00 9.77E-01 1.00E+00 3.94E+03

Figure 4.7-6: Solution 601 output listing of convergence criteria
during equilibrium iterations  

 
 
•  
CF es 
(between two iterations), and parameter CFNORM gives the norm 
of 
 

Box f of Fig. 4.7-6 shows the contact related norms. Parameter
ORCE indicates the norm of the change in the contact forc

the contact force vector.  
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 The following additional convergence criterion is used when 
con

 

 

•
tact is present: 

CFORCE RCTOL
max(CFNORM,RCONSM)

≤  

 
here RCTOL is the contact force convergence tolerance and 

 the contact convergence criterion above. 
CONSM and RCTOL are set in the NXSTRAT entry. 

 When the maximum number of iterations is reached without 
convergence, and all norms are decreasing, the maximum number 
of iterations should be increased. 
 
• When the norms are rapidly changing before convergence fails, 
it is commonly caused by applying the load too quickly or using a 

rge time step. 
 
 When CFNORM is stable but CFORCE changes rapidly during 

equilibrium iterations, the contact can be oscillating between 2 or 
more close solutions. In this case, try to change the time stepping, 

r turn on the suppression of contact oscillations feature. When 
CFNORM varies rapidly, usually the other three norms also vary. 

4.7.6  Handling improperly supported bodies 
 

 static problems depend on contact to provide the boundary 
conditions necessary for a stable problem (one in which there are 
no  Fig 4.7-7. 
 

w
RCONSM is the reference contact force to prevent possible 
division by zero in
R
 
•

la

•

o

 

Many

 rigid body modes). Some examples are shown in . 

F

Contact pair 1

Contact
pair 2

Contact
air 3p

Figure 4.7-7: Examples of improperly supported bodies

Blankholder
pressureload

Fixed die

Applied

S
y
m

m
et
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ar if the contact 
onstraints are inactive. Even if the constraints are active the 

dary conditions are applied (forces, 
oments, or pressure). Weak springs can be added by the user to 

ings may not be feasible. 
ome models may be better suited for a dynamic or the low-speed 
y sible 
ption. Therefore, several other modeling techniques are available 

on, contact damping and limiting incremental 
displacements. These techniques can be used separately or 
com
 
Sti
This feature provides a stabilizing effect by scaling all diagonal 
tiffness terms without affecting the right-hand-side load vector. 

t be (within the bounds of the 
onvergence tolerances). Since the stabilization constant in non-

dim s 
are between 10  and 10 . 
 
Contact damping (see Section 4.6.5 for details). 

ontact damping adds grounded viscous dampers to all contactor 
tial time 

tep is sufficient for some problems such as those in Fig. 4.7-7. 
Wh ed and 
dam
wi
require the damping to be constantly present. In this case, the 
program outputs the damping forces at every time step. These 
for  
dam
 The damping constants have units of force per unit velocity. 

 contact 
tact 

bo  
bet
and

In such cases, the stiffness matrix is singul
c
stiffness matrix is still not positive definite. The problem is more 
serious if natural boun
m
make the model stable. However, the selection of appropriate 
locations and stiffnesses for such spr
S
d namics feature. However, in many cases, this too is not a fea
o
in Solution 601 to handle such problems. These are stiffness 
stabilizati

bined in the same model. 

ffness stabilization (see Section 10.6 for details). 

s
The outcome of each iteration will be affected, but the final 
converged solution will no
c

ensional, it should always be a small number. Typical value
-12 -9

C
and target nodes. Setting the damping to be only at the ini
s

en the first time step converges contact must be establish
ping will have been removed. This way, the converged solution 

ll be free of any contact damping. Other problems however, 

ces should be compared with the reactions in order to ensure that
ping is not excessive. 

Hence, their proper value is problem dependent. If initial
damping is used to stabilize a problem involving two con

dies at least one of which is unsupported, and with a gap
ween them, then a good estimate of the damping constants CN 
 CT is one in which the gap is nearly closed in the first iteration. 
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Starting with the dynamic equations of motion (see Equation 6.3-1) 
and canceling out the inertial term (static analysis), and the 
stif
we
 

fness term (since one or both bodies are initially unsupported), 
 obtain 

=C U R  
 

 

e damping constants 

where C is the total damping matrix, which in this case is diagonal, 
and R is the applied load vector. We can assume the normal and 
tangential damping constants to be equal, the total damping 
contribution to be the damping constant times the number of 
contact nodes on the unsupported contact surface N (the top 
circular body in the example in Fig. 4.7-7), and the velocity to be 
approximately equal to the minimum initial gap between the two
bodies, g, divided by the time step size ∆t. This leads to the 
following value of th
 

N T
R tC C
N g

∆
= =  

 

where R is the sum of the applied loads at the first time step.  
Note that this is only an estimate, but is frequently an acceptable 

one. 
 
Limiting maximum incremental displacement (see Section 6.2.1 
for details). 
Limiting the maximum incremental displacement per iteration is 
useful when a load is applied to a body that is not initially in 

ev ess 
 

d 

e 
 the potentially huge displacement in 

the first iteration so that the resu

 

contact. The model at that stage is unstable and en when stiffn
stabilization or viscous damping is used, the initial displacement
can be excessive leading the program away from the converge
solution, and thus making the return to the proper solution difficult. 
Setting the limiting displacement to about the element length siz
in this case would scale down

lts remain close to the converged 
solution.  
 Note that this feature does not stabilize the stiffness matrix, so 
in many cases it may be necessary to use it together with stiffness 
stabilization or viscous contact damping or both. 
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4.8  Rigid target contact algorithm 

4.8.1  Introduction 
 

• The rigid target contact algorithm is intended for use in 
applications in which the target surfaces are considered to be rigid. 
It is only available for 3-D contact. 
 Fig. 4.8-1 shows a typical application in metal forming. 
 
• A target surface can either be stationary, can translate as a rigid 
body or can rotate as a rigid body. 

 

 

nlinear Solution for backwards 
compatibility. The revised rigid target contact algorithm of NX 5 is 
the default. 
 Throughout this section, the rigid target contact algorithm in 
Advanced Nonlinear Solution of NX 4 is referred to as the “NX4” 
rigid target contact algorithm. This section does not describe the 
NX4 rigid target contact algorithm; for information on the NX4 
rigid target contact algorithm, see the NX Nastran 4 Advanced 
Nonlinear Theory and Modeling Guide. 
 Models that were set up using the NX4 rigid target contact 
algorithm may need to be revised when using the current rigid 
target contact algorithm, see the conversion hints in Section 4.8.7. 
We suggest that new models not be set up using the NX4 rigid 
target contact algorithm. 

 
• It is also possible to solve many problems involving rigid 
targets using the constraint function and segment contact 
algorithms described earlier in this chapter. However, the rigid 
target contact algorithm described here is frequently more 
effective, because the rigid target contact algorithm uses the 
assumption of rigid targets to simplify the contact searching. 
 
 

• Contact can be frictionless or can include Coulomb friction. 

• The rigid target contact algorithm is completely revised in 
Advanced Nonlinear Solution of NX 5. However the rigid target 
contact algorithm in Advanced Nonlinear Solution of NX 4 is 
retained in Advanced No
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Blank

Blank holder

Blank holder force

Prescribed punch

a) Physical problem

displacement

Punch

Die

 
 

Contact
surface 2
(target)

Contact
surface
4 (target)

Contact
surface 1
(contactor),

Contact
surface 3
(target)

offsets used
to model blank
thickness

b) Modeling with contact surfaces

Figure 4.8-1: Sample metal forming analysis using the rigid-target
contact algorithm  
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4.8.2  Basi o
 

4.8.2.1 
 

A 

re than one target surface simultaneously. 

Contactor surface: The contactor surface definition includes the 
possibility of offsets.  
 When there are no offsets specified, the contactor surface is 
described entirely by the contactor nodes. (Fig. 4.8-2(a)).  
 

c c ncepts 

 Contactor surfaces 

Similar to the other contact algorithms in Advanced Nonlinear 
Solution, the contact surfaces are organized into contact sets. Each 
contact surface consists of 3- or 4-node contact segments. 
contact pair consists of a contactor surface and a target surface. In 
the rigid target algorithm, it is allowed for a contactor surface to be 
in contact with mo

 

Contact
segment 1

Contact
segment 2

Segment normals

a) Contactor segments without offsets. Segment normals are not used. 
 

Lower surface

Radius of sphere
= contactor offsetUpper surface

b) Contactor segments with spherical offsets. Segment normals are not used.

Figure 4.8-2: Contactor segments  
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r be 
des (Fig. 

2(b)), or using the contactor normals (Fig. 4.8-2(c)). In either 
case, the offset magnitude is either constant or taken from the 

ckness of attached shell elements, as described below. 
 

Contactor
node normal

Contactor node norm

Offset vector = cont

fset
vector

Contactor segments w offsets

 When there are offsets specified, the offsets can eithe
described using spheres centered around the contactor no
4.8-

current thi

Of

Upper contactor point

Lower contactor point

al = average of all segment normals

actor node normal offset magnitude�

c) ith offsets, normals used to describe

Figure 4.8-2:  
 

 When the offsets are described using the contactor normals, 
offset vectors are constructed using the averaged contactor normals 

ts are 

 When the target surface is concave, it is possible for the contact 
tu , 

 

ntact with target edge 1 since edge 1 

d 
h

Contactor segments (continued)

and the offset magnitude. The upper and lower contactor poin
constructed from the contactor nodes and the offset vectors. 

si ation to be similar to the one shown in Fig. 4.8-3. In this case
when the offsets are described using spheres, the center contactor
node cannot be in contact with both target segments at once, hence 
the center contactor node will oscillate between them. The center 
contactor node cannot be in co
is farther away than either of the target segments. Equilibrium 
iterations in static and implicit dynamic analysis will not converge, 

ecause of the oscillation. However contact is correctly modeleb
w en the offsets are described using normals, because the center 
contactor node can be in contact with target edge 1. 
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Target segment 1

Spherical offset

a) Spherical offsets, con odeled

Contactor and target surfaces viewed from the side
for ease of visualization.

Contac

ode cannot be
segments at the

In co

contact with target segment 2

segment

tact incorrectly m

tor surface

2

This contactor n
with both target

in contact
same time.

In

ntact with target segment 1

Target

 

           

 

N

Target segment 1

ormals offset

T

In conta

In contact with target segmen

2

arget edge 1

ct with target edge 1

t 1
In contact with target segment 2

Target segment

b) Normals offsets, contact correctly modeled

Figure 4.8-3: Concave target surface, contactor surface with offsets   
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4.8.2.2  Target surfaces 
  

surface is eit , or can rigidly move 
nslate, rotate or a com

 
4.8.2.3  Determination of contact between contactor and target 

 
No contactor offsets: It is allowed for a contactor node to be in 

ntact with a target segm The 
 searches for the target segm

the absolute value of the distance d between the contactor node and 
ent, edge tance 

easured in the directi .8-

tance corresponds to g
Notice that, for interaction between a contactor node and target 

dge, or between a contactor node and target node, the normal 
direction is taken from the line segment connecting the contactor 

 in Fig. 4.8-4. 

 

Each target her stationary
(tra bination of translations and rotations). 

co
program

ent, target edge or target node. 
ent, edge or node for which 

the target segm or node is minimized, where the dis
is m on opposite to the target normal (Fig. 4
4). A positive distance corresponds to a geom
dis

etric gap; a negative 
eometric overlap. 

 
e

node and the target, as shown
 
 
 
 
 
 
 

Figure 4.8-4: Interaction between contactor node and target surface

a) Interaction between contactor node and target segment

Target segment

Target segment normal

Contactor node

d

n

Closest point on
target segment
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target edge

Target edg

Contactor

e

b) Interaction between contactor node and

e

n
Closest point on
target edg

node

d

 
 

Contactor node

d

c) Interaction between contactor node and target node

n

Target node

Figure 4.8-4: Interaction between contactor node and target surface
(continued)  

 
 Fig 4.8-5 shows two target segments with a common target 

g  

rget edge depends upon 
e angles between the target segments attached to the edge. 

 

ed e. The shaded volumes indicate which of the target entities any
contactor node is closest to. Notice that the shaded volume in 
which the contactor node is closest to the ta
th
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Figure 4.8-5: Intera

Contactor node i
is closest to segm

Contactor node in this shaded volume
is closest to segment 2.

Segment 2

n this shaded volume
ent 1.

Contactor node in this shaded volume
is closest to edge 1.

Edge 1

Segment 1

ction of contactor node with target segments and edges  
 
 

 

 

 Once the target segment, edge or node is determined, then the 
contact gap is computed using 

GAPBIASg d= −  
 

where GAPBIAS can be chosen to, for example, not model contact 
even if there is geometric overlap. (The default for GAPBIAS is 0.) 
 If the corresponding gap is negative, and less than DEPTH, then 
ontact occurs, in other words DEPTH 0g− ≤ ≤c  is the contact 

 
 
 

condition. DEPTH can be chosen to limit the depth of the target 
surface, exactly as in the other contact algorithms. 
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Contactor offsets described using spheres:  In this case, the 
distance d is determined exactly as if there are no offsets. Then the 
contact gap is computed using  

 
OFFSET GAPBIASg d= − −  

where OFFSET is the o
 

for 

 

spherical offsets

d

Closest point on
target segment

ffset magnitude. The process is illustrated 
for interaction between a contactor node and target segment, 
assuming that GAPBIAS = 0 (Fig. 4.8-6). The same idea is used 
interaction between a contactor node and target edge or node. 

Contactor node

OFFSET

Target segment
d - OFFSET

igure 4.8-6: Interaction between contactor node and target segment,

n

F

 

Co
detected using the upper and lower contactor points instead of the 
con

 
Os
edg  
601. During the equilibrium
contactor node to move in such a way as to be alternately in contact 
with two neighboring segments. This is especially true if the target 
surface is concave. When the contactor node oscillates between two 
neighboring segments, the solution cannot converge unless 
oscillation checking is turned on. When oscillation checking is 
turned on, then, when oscillation is detected between two 
neighboring segments, the contactor node is placed into contact 
with the shared target edge. In many cases, this procedure allows 

 
ntactor offsets described using normals:  In this case, contact is 

tactor nodes.  

cillation checking:  The search for the nearest target segment, 
e or node is performed every equilibrium iteration in Solution

 iterations, it is possible for the 
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the iterations to converge, if in fact the contactor node “should” 
have been in contact with the shared target edge. 
 Oscillation checking only forces the contact between the 
contactor node and shared target edge for the current equilibrium 
iteration. For the successive equilibrium iterations, the contactor 
node is always in contact with the nearest target segment, edge or 
node. So oscillation checking cannot force contact to the “wrong” 
target segment, edge or node in a converged solution. 

 
Contact normal force: The normal force corresponding to contact 
is computed as gn nF k= −
direction opposite to the target norm

 where the normal force acts in the 
al direction (Fig. 4.8-7).  is 

the contact normal stiffness, entered as a parameter (see Section 
4.8.3 for hints about choosing ).  can be considered to be a 
penalty parameter. 

 
Slope -kn

nk

nk nk

Fn

Figure 4.8-7: Normal contact force vs. gap

g-DEPTH

Tensile contact curve

 
 

 
Tensile contact:  During equilibrium iterations in Solution 601, a 
node can temporarily be in “tensile contact”. The basic ideas for 
tensile contact are illustrated in Figures 4.8-8 to 4.8-10. 
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Figure 4.8-8: Iterations when tensile contact is not used

b) Iteration ite-1,
no contact force

c) Iteration ite,
contact force F
is large and compressive

ite

teration ite-2,
tact force F
ompressive

ite-2

t segment

Contactor

Spring compressed

a) I
con
is c

T

is

node Spring is uncompressed

arge

 
 
 
 
u

Fig. 4.8-8 shows the iteration history when tensile contact is not 
sed. For iteration ite-2, the contactor node and target segment 

overlap. Hence contact is assumed between the contactor node and 
 iteration ite-1, because of the relative motion of 
nd target segment, the contactor node and 

target segment do not overlap. For this iteration, no contact is 
r 

e. 

ouble in convergence in the successive iterations. 
 Fig. 4.8-9 shows the iteration history when tensile contact is 
used. Now, in iteration ite-1, tensile contact is assumed between the 
contactor node and target segment. In tensile contact; the target 
surface still provides stiffness to the contactor node. Hence the 
overlap in iteration ite is small.  
 

target segment. For
the contactor node a

assumed between the contactor node and target segment. Fo
iteration ite, there is a large overlap because the contactor spring 
unloads, since there are no forces acting on the contactor spring, 
and the target does not provide any stiffness to the contactor nod
This large overlap causes large contact forces, which can cause 
tr

Figure 4.8-9: Iterations when tensile contact is used

Contactor node

b) Iteration ite-1,
contact force F
is tensile

ite-1

c) Iteration ite,
contact force F
is compressive

ite

a) Iteration ite-2,
contact force F
is compressive

ite-2

Target segment
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d in iteration ite, no contact is assumed. 
 

 Fig.4.8-10 shows the iteration history when tensile contact is 
used, and the gap is large. In iteration ite-1, tensile contact is 
assumed, an

Figure 4.8-10: Iterations when tensile contact is used, converged solution not in contact

Contactor node

b) Iteration ite-1,
contact force F
is tensile

ite-1

c) Iteration ite,
no contact force

a) Iteration ite-2,
contact force F
is compressive

ite-2

Target segment

 
 

 
 It is seen that tensile contact speeds up the convergence when 
the converged solution is in contact, and slows down the 
convergence when the converged solution is not in contact.  
 It is not permitted for a solution in which tensile contact is 
present to converge, unless the tensile forces are all less than the 
value of a user-input parameter (see Section 4.8.3). Hence the 
tensile contact feature does not affect the converged solution. 

 
4.8.2.4  Frictional contact 

 
 The friction force is calculated using the relative sliding velocity 
between the target and contactor. The relative sliding velocity
is calculated from the velocities of the contactor and target using 

 

 fu  

( ) ( )( )f c t c t= − − − ⋅u u u u u n  n

where  is the velocity of the contactor node,  is the velocity 
al. 

e taken from the nodal velocities. 

 
cu tu

of the target and n  is the target norm
 In static analysis, the contactor and target velocities are 
calculated using the nodal incremental displacements divided by 
the time step. In dynamic analysis, the contactor and target 

elocities arv
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 The friction force magnitude is computed using 
 

min
min

,f
f n f f

f

F F u
u

µ= <
u

u

min, f fF uµ= ≥u

 

 
here F  is the normal contact force and µ  is the Coulomb 

a parame (see Section 4.8.3 for hints about 

�u
.

w  n

friction constant (Fig. 4.8-11). minfu  is the minimum sliding 
velocity, entered as ter 
choosing minfu ). The direction of the friction force is always 

opposite to fu .  
 

Sliding

Ff

&Fn

�&Fn

u
.u

.
ff

Figure 4.8-11: Friction force vs. velocity

StickingSliding

 
 
 

When minf fu<u , the friction is sticking, otherwise the friction is 

sliding.  
 

 

 
ire

Oscillation checking with friction: During equilibrium iterations in
Solution 601, it is possible for the contactor node to undergo 
“sliding reversals”. Namely, the contactor node slides in one 
direction for an equilibrium iteration, then reverses sliding
d ction for the next equilibrium iteration. When sliding reversals 
occur, the solution cannot converge unless oscillation checking is 
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into 
cking force is larger than the sliding 

rce, and convergence is prevented for the current equilibrium 

t 

king) is determined as usual from the 
sliding and sticking forces. So oscillation checking cannot 

n
 

4.8.3  Mod
 

on 
ard. For Solution 701, set XTYPE=3 on the 

CTPARA card. 
 
Algorithm used:  The current rigid target contact algorithm is 
selected by default. To select the NX4 rigid target contact 
algorithm, set RTALG=1 on the NXSTRAT card. 

Modeling of target surfaces:  If the target surface translates or 
rotates, all of the nodes on the target surface must be connected to a 
“master node”, either using constraint equations or using rigid 
links. For example, in Fig. 4.8-12, all of the nodes on the lower 
target surface are connected to a master node using rigid links. 
 It is not allowed for the nodes on a target surface to have 
independent degrees of freedom. All degrees of freedom for the 
nodes on a target surface must be fixed or constrained. 
 The amount and description of offset is determined by the 
BCTPARA parameters OFFTYPE, OFFSET and OFFDET. If 
OFFTYPE=0, there is no offset. If OFFTYPE=1, a constant offset 
of value OFFSET is used. If OFFTYPE=2, an offset equal to half 
of the current shell element thickness is used. 

turned on. When oscillation checking is turned on, then, when 
sliding reversals are detected, the contactor node is placed 
sticking contact, even if the sti
fo
iteration. 
 Oscillation checking only forces sticking friction for the curren
equilibrium iteration. For successive equilibrium iterations, the 
frictional state (sliding or stic

co verge to a solution in which the frictional state is wrong. 

eling considerations 

Selection of rigid target contact: For Solution 601, set TYPE=2 
the BCTPARA c
B
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Figure 4.8-12: Modeling of fixed and moving target surfaces

Moving target surface

Rigid links

Master node, independent degrees of freedom

Slave nodes

Fixed nodes

Fixed target surface

 
 
 
Modeling of contactor surfaces: When there is an offset, then 
BCTPARA parameter OFFDET determines the description of the 
offset. If OFFDET=0, then Advanced Nonlinear Solution 
determines the offset description (either spheres or normals, see 
Section 4.8.2.1). The criterion used by Advanced Nonlinear 
Solution is that an offset description of spheres is used for each 
target surface that is convex or flat, and an offset description of 
normals is used for each target surface that is concave. If 

FFDET=1, then the offset description is spheres, and if 
OFFDET=2, then the offset description is normals. 
 When normals are used for the offset description, small steps 
should be used in Solution 601. This is because the offset vectors 
are assumed to remain constant during the equilibrium iterations. In 

O
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particular, at convergence, the offset vectors corresponding to the 
previous converged solution are used. 
 
Determination of contact, modeling issues: Contact is affected by 
variables GAPBIAS and DEPTH, as described in Section 4.8.2.3. 

 

ec

 

e

 

 normal that points in the 
ire

 

or and target would overdistort the elements attached to the 
on

de 
t. Another way to avoid this issue is 

to create additional target segm

GAPBIAS is set using BCTPARA parameter GAPBIAS (default 
=0) and DEPTH is set using BCTPARA parameter PDEPTH 
(default=0). 

It is possible for the closest target segment, edge or node to not 
be the expected one. An example is shown in Fig. 4.8-13. In this 
example, the rim of the wheel is modeled with target segments. 
B ause the distance between a contactor node and a target 
segment is measured in the direction of the target segment normal, 
a contactor node interacts with the lower target surface, and the 
contact algorithm detects a large overlap between this contactor
node and the lower target surface. 
 Another example is shown in Fig. 4.8-14. In Fig. 4.8-14(a), 
th re is a gap between the contactor node and the closest target 
segment, as expected. In Fig. 4.8-14(b), the punch has moved 
upward relative to the contactor node. Now there is a large overlap
between the contactor node and the closest target segment. This 
segment is the only segment with a
d ction of the contactor node.  
 In both Fig. 4.8-13 and Fig. 4.8-14, the large overlap is 
unintended. In Solution 601, the equilibrium iterations would most
likely not converge. In Solution 701, the large forces between 
contact
c tactor node. 
 One way to avoid the large overlaps is to use the DEPTH 
feature so that contact is not detected between the contactor no
and the incorrect target segmen

ents as shown. Then the contactor 
node is closest to one of the additional target segments. 
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Figure 4.8-13: Modeling of a wheel

a) Orthographic view of wheel b) Side view of wheel

c) DEPTH feature used

DEPTH

t surfaces

Contactor node
is closest toContactor node is closest

to lower target. Contac
node is not closest to upper

Contactor node
cannot be in contact
with lower target

Contactor node is closest
to target edgeUpper target

Upper target

Lower target

target

upper targettor

target, since there is no
upper target segment with
normal that points in the
direction of the contactor
node.

Upper target

Lower target Lower

d) Wheel modeled with additional targe

 

er, 

 can lead to convergence 
difficulties. 

 
 

Choice of nk : nk  is set using BCTPARA parameter NCMOD. The 
default value of the normal contact stiffness nk  is 1E11. Howev

nk  can be chosen for optimal convergence. Note that increasing nk
causes the maximum overlap between the contactor and the target 
to become smaller. Also, increasing 

 

nk
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Figure 4.8-14: Modeling of a punch

a) Intended interaction of contactor
node and target surface; contactor
node is not in contact with target

b) Unintended interaction of contactor
node and target surface; contactor is
in contact with target with large overlap

d) Additional target segments used, contactor
is not in c

c) DEPTH feature
is not in contact with target

ode

Contactor
node

losest point
n target surface
at interacts
ith contactor node

point
target surface

that interacts
node

Closest point
t surface
racts

C
o

Closest
on

th
w with contactor

ontact with target

used, contactor node

DEPTH

with contactor node

Contactor
n

on targe
that inte

Target surface

 

e 
ce is curved, there will be a geometric error associated 

. 

 
 We recommend that the smallest value of nk  be used such that 
the maximum overlap is still acceptably small. For example, if th
target surfa
with using a coarse contractor surface (Fig. 4.8-15). There is no 
advantage if the maximum overlap is less than the geometric error
So, if the mesh is coarse, a large maximum overlap can be used. 
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Figure 4.8-15: Modeling of a curved target surface

Target surface, fine mesh used

Contactor surface, coarse mesh used

Geometric error

 
 
 Another c r  i  

 target a orithm is node-based, and bec
contact stiffness is the same for each node in contact, the stresses 
computed in higher-order elements on the contactor surface will be
inaccurate, if nk  is too small. For example, in a problem involving 
pressing an element onto a contact surface, nk  should be greater 

than 

onsideration fo the choice of s the following.
Because the rigid lg ause the 

 

 nk

100 EA
nL

here E  is the Young’s modulus, A  is the contact 

area, L  is the element thickness (in the contact direction) and n  is
e basic concept is 

 w

 

 This issue also arises when lower-order elements are used, but 
when lower-order elements are used, the variation in the consistent 
nodal point forces is much less, so  can be smaller for the same 

 element stresses. 

the number of nodes on the contact area. Th
illustrated in Fig. 4.8-16. 

nk
accuracy in the
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Figure 4.8-16: Higher-order elements and rigid-target tactcon

a) Soft target s
element stresse

b) Hard target surface, k large,
element stresses are accurate

n

Contact forces acting on contactor nodes
are all nearly

nodes
s

Uniform pressure load

Contact
area A

Yo
modulus E

Uniform pressure load

ung’s

L

urface, k small,
s are inaccurate

n

equal
Contact forces acting on contactor
are nearly equal to consistent force
corresponding to pressure load

 
 
 

Tim  
be sm
 

e step for Solution 701: For Solution 701, the time step should
aller than 

2
n

mt∆ =  
k

 
This formula is derived from the following considerations. 
Consider a single contactor node with mass  and no additional m
stiffness or damping, with a velocity normal to the target. If this 
node just touches the target at time t t− ∆ , and penetrates the t
at time t , the node should remain in contact at time t t+ ∆ . T

arget 
he 

choice of t∆  in
 Clearly, decr

 the above equatio s this co
easing  will increase the time step 

n satisfie ndition. 
 nk t∆ . 

 A node that is out of contact at time t t− ∆ , in contact at time t  
and out of contact at time t t+ ∆  is said to have had a contact 
reversal (Fig. 4.8-17).  
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t t

Contactor node at t t��

Contactor node at t t#�

�� u
.

t t#� u
.

Contactor node at t

Figure 4.8-17: Contact reversal due to too large time step in
Solution 701  

 
ll 

nce the results. This is 
ecause, in static analysis, the nodal velocities used in the friction 

calculations are calculated as the incremental displacements 
divided by the time step. 
 In those parts of the analysis in which friction is important, a 
“realistic” time step should be used. 
 In those steps of the analysis in which friction is not important, 
a large time step can be used, which causes the velocities to be 
small. For example, in metal forming analysis, a large time step 
ize can be used when establishing the blank holder force, and 

during springback calculations. 
 

Choice of  for frictional contact:  is set using 
BCTPARA parame
minimum sliding velocity  is 1E-10. However  can be 

, or 

 
 
 
 

 

Time step selection in frictional contact:  The time step size wi
affect the frictional velocities and he
b

s

minfu  minfu
ter SLIDVEL. The default value of the 

 minfu minfu
chosen for optimal convergence. Decreasing minfu  can lead to 
convergence difficulties. 
 We recommend that minfu  be chosen from experimental data

that the largest acceptable value of  be used. minfu
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Time step for Solution 701 for frictional contact: For Solution 701, 
the time step should be smaller than 
 

min2 f

n

mu
t

Fµ
∆ =  

 
to prevent reverse sliding. This formula is derived from the finite 

ifference equation corresponding to explicit time integration, 

 

d
when applied to a single contactor node with mass m  and no 
additional stiffness or damping, sticking to the target, but with a
nonzero sticking velocity. If t∆  is larger than the value in the 
above equation, the velocity will increase, and eventually the node 

ding 
. 

 

will slide. The sliding will then tend to “reverse”, that is, for a 
given time step, the sliding direction will be opposite to the sli
direction in the previous step (Fig. 4.8-18)

Figure 4.8-18: Reverse sliding due to too large time step in
Solution 701

t
fu

. t t
f

#� u
.
Contactor node at t t#�Contactor node at t

 
 

Note that when the time step is greater than min2 f

n

mu
t

Fµ
∆ = , the 

solution is still stable. 
 
Automatic time step selection in Solution 701: When using the 
automatic time step selection options in Solution 701, the time step 
returned from the rigid target contact algorithm is  
 

min i

i
n

mt
k

∆ =  
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where the minimum is taken over all contactor nodes. Notice that 
ion; this 

is because the model remains stable even if the time step is larger 
step discussed above. 

Birth/death: Rigid target contact surfaces can have a birth and 
death time, similar to other contact surfaces. The birth and death 
times are set by BCTPARA parameters TBIRTH and TDEATH 
(default =0.0, corresponding to no birth and death). 
 
Other user-input parameters: 

BCTPARA TFORCE 
 
The maximum tensile force for a node in tensile contact for which 

le 
contact must have a tensile force less than this value for the 
solution to converge. Tensile contact is not used in Solution 701. 
 
BCTPARA OCHECK 

efault is 

 
4.8.4  Rigid

 
d 

Recommend: If the maximum overlap is too large, increase 

friction is not considered in the automatic time step select

than the friction time 
 

 

convergence is allowed (default value 0.001). All nodes in tensi

 
If OCHECK = 0, then oscillation checking (described in Section 
4.8.2.3) is turned off. If OCHECK = ITE>0, then oscillation 
checking is activated after equilibrium iteration ITE. The d
5. Oscillation checking is not used in Solution 701. 

 target contact reports for Solution 601 

The following messages are output at the end of each converge
solution. 
 
Maximum overlap at convergence: 
 

Meaning: self-explanatory 
 

nk ; 

nk . if the maximum overlap is too small, decrease 
 
 
 



Chapter 4: Contact conditions 
 

 
 
258 Advanced Nonlinear Solution ⎯ Theory and Modeling Guide 

aximum tensile contact gap during iterations for nodes in contact 
 

contact during the iterations, then 
go back into contact before convergence. This report item 
reports the maximum contact gap of all such nodes. When the 

.  

umber of nodes in contact, number of nodes in sticking contact, 

h 
the node is in contact with. So a node that is 

in contact with two target surfaces simultaneously is counted 
twice. 

 

Recommend:  Either reduce the time step or decrease 
 
 

M
at convergence: 
 

Meaning: A node that is in contact at the start of the time step 
may temporarily move out of 

tensile contact gap is large, then convergence may be difficult
 
Recommend: Either reduce the time step or decrease nk  to 
reduce the tensile contact gap. 

 
Maximum friction velocity at convergence:  
 

Meaning: For nodes in frictional contact, this is the maximum 
friction velocity of a node (either sticking or sliding).  
 
Recommend: If the maximum velocity is less than minfu , and 

the corresponding node should be sliding, decrease minfu .  
 

N
number of nodes in sliding contact: 
 

Meaning: Self-explanatory. Each node is counted once for eac
target surface that 

Change of contact status during iterations: 
 

Meaning  The number of nodes that switch contact status (not in 
contact to in contact, or vice versa), is reported. If there are 
many nodes that switch contact status, this may cause 
convergence difficulties.  
 

nk . 
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In tact during iterations.  
  

ct 
ing that the nodes were almost out of 

ontact) and in contact in the converged solution. When there 
are many such nodes then convergence may be difficult. 
 
Recommend  Either reduce the time step or decrease  to 
reduce the likelihood that nodes go into tensile contact. 

status during iterations:   
 

Meaning: The number of nodes that change frictional contact 

any nodes that switch frictional 

at 

aximum change of contact force at end of iterations: 

Meaning: The contactor node for which the contact force had 

tus 

Meaning: The number of nodes that are undergoing sliding 
reversals at the end of the iterations. 

contact at convergence, in tensile con

Meaning: The number of nodes which were in tensile conta
during the iterations (mean
c

nk

 
Change in frictional contact 

status (from sticking to sliding or vice versa) is reported.  
 
Recommend: If there are m
contact status, reduce the time step or increase minfu . 

 
The following messages are output at the end of each solution th
did not converge. 
 
M
 

the largest change is output. 
 
Recommend: Examine the model near that contactor node for 
hints about why the solution did not converge. 

 
Change of contact status at end of iterations:  
 

Meaning: The number of nodes that are changing contact sta
at the end of the iterations. 

 
 Recommend: Reduce the time step or decrease nk . 
 
Sliding reversal at end of iterations: 
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Recommend: Reduce the time step or increase 

lation checking is not turned on, turn it on. 

4.8.5  Rigid

Meaning: See the corresponding message in Section 4.8.4. 

t 

ing message in Section 4.8.4. 

g recommendations in 
Section 4.8.4. 

 
Maximum friction velocity since solution start, maximum friction 
velocity since last report: 
 

Meaning: See the corresponding message in Section 4.8.4. 

ith 
 

minfu  
 
Change of target entity at end of iterations.  
 

Meaning: The number of nodes that are oscillating between 
different target entities at the end of the iterations.  
 
Recommend: If oscil
Otherwise refine the target surfaces, or reduce the time step. 

 
 target contact report for Solution 701 

 
The following items are output for each time step in which results 
are printed or saved: 
 
Number of nodes in contact, number of nodes in sticking contact, 
number of nodes in sliding contact: 
 
 
 
Maximum overlap since solution start; maximum overlap since las
report:   
 

Meaning: See the correspond
 
Recommend: See the correspondin

 
Recommend: See the corresponding recommendations in 
Section 4.8.4. 

 
Contact reversals since solution start, since last report:  
 

Meaning: This is a count of the total number of contact 
reversals. Also the number of contact reversals for the node w
the most contact reversals is given, along with the mass of the
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Recommend: To reduce the number of contact reversals, either 
reduce the time step or decrease 

 
Sliding reversals since solution start, since last report:  
  

Meaning: This is a count of the total number of sliding 
reversals. Also the number of sliding reversals for the node with 
the most sliding reversals is given, along with the mass of the 

r 

 
4.8.6  Modeling hints and recommendations 

 

o

ot 
of 

e 

ively thin, setting the 
ard to 2 can allow the use of 

larger time steps. 

• The contact search algorithm may take a relatively long time for 
the first iteration of the first time step. Similarly, the contact search 
algorithm may take a relatively long time for the first iteration of 

e step in which a contact set is born. 

node.  

nk  

node.  
 
Recommend: To reduce the number of sliding reversals, eithe
reduce the time step or increase minfu . 

 
• For a time step in which contact is established over a large area,
many equilibrium iterations may be required in Solution 601. This 
is because the solution cannot converge until the nodes in and out 

f contact are determined, and it may take many equilibrium 
iterations to determine which nodes are in and out of contact. An 
example is shown in Fig. 4.8-19. The ATS cutback method will n
be effective for this time step. Rather, the maximum number 
iterations should be set very large, so that the program can find th
converged solution. 

 
• When forming a part that is relat
PLASALG flag of the NXSTRAT c

 
 

any tim
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a)

b) S

to accurately determine contact here.

Prescribed displacement

Contactor surfaces

Figure 4.8-19: Establishment of contact over a large area during a
solution step

Solution step before contact with target surface 2

olution step after contact with target surface 2

Possible contact in this area, many
equilibrium iterations may be required

T

e 1

arget surface 1

Target surface 2

Target surfac

Target surface 2

 
 

sonable. 
 

interact with the target. An example is illustrated in Fig. 4.8-20. 

• As the contactor surface is refined, keeping nk  constant, the 
overlap and contact force will decrease at each contactor node. 
Hence nk  may need to be adjusted as the mesh is refined. In 
general, as the mesh is refined, nk  can be decreased in order to 
keep the overlap rea

• Convergence in Solution 601 may become difficult when 
contactor nodes that were not in contact with the target suddenly 

Eventually the contactor nodes on the right will come into contact 
with the target, and convergence may be difficult. Alternate ways 
to model this situation are shown in Fig. 4.8-20. 
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tactor node in contact

Drawing
Contactor node not in contact

Con

direction

Figure 4.8-20: Contactor nodes suddenly coming into contact

a) Poor modeling

b) Good modeling

c) Good modeling

 

 
 Another example is shown in Fig. 4.8-21. In Fig. 4.8-21(a), the 

t, because a very small change in the position of the 
dicated node can cause the contact status of that node (and hence 

ly 
get surface. Convergence is 

asier, because a very small change of the position of the indicated 
node results in only a very small change in the contact force. 
 In metal forming analysis, this situation in frequently 

ce is easier if round corners are added to the blank holder 

 

top target surface is flat, and the indicated node suddenly comes 
into contact with the top target surface. Convergence is very 
difficul
in
the contact force) to change abruptly. In Fig. 4.8-21(b), the top 
target surface has a round corner, and the indicated node gradual
comes into contact with the top tar
e

encountered in the modeling of the blank holder. The modeling is 
easiest if the blank holder is modeled as a flat target surface. But 
convergen
wherever nodes on the blank are anticipated to contact the blank 
holder during drawing. 
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c) Good modeling

Contactor node in contact

Drawing
direction

Contactor node not in contact

Figure 4.8-21) Contactor nodes suddenly coming into contact

a) Poor modeling

b) Good modeling

 
 
 

4.8.7  Conversion of models set up using the NXN4 rigid target algorithm 
 
The following hints may be useful when running models that were 
set up using the NXN4 rigid target algorithm: 
 
• The results from the NXN4 and current rigid target contact 
algorithms will usually be quite different: 
 
a) In Solution 601, the NXN4 rigid target algorithm only 
determines the state of contact at iteration 0; the current rigid target 
algorithm determines the state of contact at every iteration. 
 
b) The NXN4 rigid target algorithm only allows contact between a 
contactor node and one target surface; the current rigid target 
algorithm allows contact between a contactor node and more than 
one target surface. 
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c) In Solution 601, the NXN4 rigid target algorithm can force ATS 
cutbacks when it detects tensile forces, the current rigid target 
algorithm does not force ATS cutbacks. 
 
d) In Solution 701, the basic formulation used by the NXN4 rigid 
target algorithm is quite different than the basic formulation used 
by the current rigid target algorithm. 

lish contact. This is because, in the NXN4 rigid target 
algorithm, the state of contact is only determined in iteration 0.  
 
• Once contact is established, the current rigid target algorithm 

 
issues of the NXN4 rigid 

target algorithm do not exist in the current rigid target algorithm. 
 
• In the NXN4 rigid target algorithm, the ATS method is 

d 

t 
me step. But the current rigid target algorithm can 

affect the critical time step. 

l displacements. In the current rigid target 
algorithm, the amount of friction is based on the velocity 
(incremental displacements divided by time step). So in frictional 
analysis, the time step size will affect the results in the current rigid 
target algorithm. 

 

 
• In general, in Solution 601, the current rigid target algorithm 
requires more iterations than the NXN4 rigid target algorithm to 
estab

can be used with much larger time steps than the NXN4 rigid target
algorithm. The “excessive penetration” 

automatically turned on in Solution 601. However, in the current 
rigid target algorithm, the ATS method is not automatically turne
on.  
 
• In Solution 701, the NXN4 rigid target algorithm does not affec
the critical ti

 
• In the NXN4 rigid target algorithm, the amount of friction is 
based on the incrementa
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5. Loads, bou
equations 

5.1  Introduc

The objective of this chapter is to present the various options 
available in Advanced Nonlinear Solution for the description of 
app

• 
bo
 

Case Control Command Comments 

ndary conditions and constraint 

tion 

lied loads, boundary conditions, and constraint equations. 
 
Table 5-1 lists the Case Control commands used for loading, 

undary conditions, and initial conditions. 

DLOAD Select load set (time varying) 
LOAD Select load set (non-time varying) 

SPC Select single-point constraint set (including 
enforced displacement) 

MPC Select multipoint constraint set 

IC  Select initial conditions set (displacements 
and velocities) 

TEM ets PERATURE Select initial and applied thermal load s
BOL Select bolt preload set TD 

 
Table 5-1: Case Control commands in Advanced Nonlinear 

Solution 
 

• Note that the selected DLOAD set can be used for any time 
varying loads in both static and dynamic analysis. Similarly, the 
elected LOAD set can be used for defining constant loads in both 

static and dynamic analyses. 
 

• Table 5-2 lists the load, boundary condition and initial condition 
Bulk Data entries supported in Advanced Nonlinear Solution. 
 
• Table 5-3 lists the Bulk Data entries used for combining applied 
loads and/or enforced displacements in Advanced Nonlinear 
Solution. 

s
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Bulk Data
 

 Entry Comments 

FORCE, FORCE1, FORCE2 Concentrated force on nodes 

MOMENT, MOMENT1, 
MOMENT2 

Concentrated moment on nodes 

SPC1,2,4, SPC14, SPCADD4 Fixed or enforced degrees of freedom 
on nodes 

SPCD4 Enforced displacement on nodes 

PLOAD  or  Uniform pressure on shell element
3-D solid face 

PLOAD1 Distributed load on beam element 
Concentrated force on beam nodes 

PLOAD2 Uniform pressure on shell element 

PLOAD4 Pressure or distributed load on shell or 
3-D solid face 

PLOADE1 Varying pressure on plane stress or 
plane strain 2-D solid element 

PLOAD ssure on axisymmetric 2-D 
lid element 

X1 Varying pre
so

TEMP Applied temperature on nodes 

TEMPD Applied default temperature 

GRAV Mass proportional inertial load 

RFORCE Centrifugal load 

MPC, MP Define multipoint constraints  CADD 

TIC3 Initial displacement and velocity
nodes 

 on 

BOLTFOR Preload force on bolts 
 
Table 5-2: Bulk data entries for defining loads, boundary 
conditions and constraints 
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Bulk Data Entry Comments 

TEMPBC Applied temperature on nodes in heat 
transfer analysis 

QHBDY, QBDY1 Uniform heat flux on boundary 
element 

QBDY2 Varying heat flux on boundary 
element 

QVOL Uniform volumetric heat addition 

CONV Free convection on boundary element 

RADBC Space radiation on boundary element 
 
 

Notes: 
 
1. SPC can also enforce displacement. 
2. If enforced displacements are always 0.0 they become a boundary 

condition. 
3. Initial con
4. Can also b erature in a heat transfer analysis. 

 
Table 5-2: (continued) 

 

ditions are discussed in Section 10.1.  
 used to fix or enforce tempe
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Bulk Data Entry Comments 

LOAD  Defines a linear combination of 
constant loads 

DLOAD 
Defines a linear combination of time 
varying loads (by combining different 
TLOAD1 entries) 

TLOAD1 Defines time varying loads and 
enforced motion 

TABLED1, TABLED2 loads 
Defines the time functions used by the 

 
Table 5-3: Bulk data entries for applying loads and enforced 

displacements 
 
 
 
• The LOAD entry is used for combining loads that are constant 
throughout the analysis while DLOAD is used for combining 
time-varying loads. The DLOAD entry references a load defined 
through a TLOAD1 entry. The TLOAD1 entry references the type 
of load (applied load or enforced displacement), as well as the table
entry (TABLED1 or TABLED2) defining the time varia

 
tion of the 

• A time function is defined as a series of points  in 

load. 
 
• Both LOAD and DLOAD can be used in static and dynamic 
analyses in Advanced Nonlinear Solution. 
 

( )( ), it f t

which t is time and ( )if t  is the value of time function i at that time
Between two successive times, the program uses linear 
interpolation to determine the value of the time function. 
 
• Advanced onlinear Solution does not support subcases. If 

. 

N
ubcases are only used to change the applied load in a static 
nalysis, then they can be equivalently defined in Advanced 
onlinear Solution as time-varying loads in a single case. 

 

s
a
N
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load such as the enforced displacement 
shown in Fig 5.1-1 (on the y direction of node 100) will be applied 

.0, 
,0.0, 2.0, 2.0, 4.0, 4.0, 4.0, 5.0, 0.0,  

TSTEP, 1, 8, 1.0, 4 
 

• A typical time-varying 

as follows: 
 
DLOAD, 1, 1.0, 10.0, 5 
TLOAD1, 5, 3,, DISP, 7 
SPCD, 3, 100, 2, 1.0 
TABLED2, 7, 0

,7.0, -2.0, 8.0, 0.0, ENDT 

8

Time functions:

Time 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

tR

0.0

40 40 40 0 -10 -20 0

Resulting load values for tR = 10f(t):

4

3

2

1

-1

-2

2 4 6 10

f(t)

t

20 30

Figure 5.1-1: Typical time-varying load  
 
 Note that the TSTEP entry is used for both linear and nonlinear 
analyses. In this case, 8 steps of size 1.0 are selected with output 
every 4 steps. 

Note that in Solution 701 with automatic time step selection, the 
bove input will not result in 8 steps. Instead, the critical time step 
r the model will be used and output of results will be done as 

oon as the solution time exceeds 4.0 and 8.0. See Section 7.1 for 
etails. 

 
a
fo
s
d
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• The LOAD case control command can point to a LOAD entry 
or to individual loads, and similarly the DLOAD case control 

 
 

• Boundary conditions can be grouped into two classes: essential 

es 
forced displacements and constraint equations. 

s 

 All displacement and force boundary conditions are referred to 

utions from the 
various applied loads. 

For concentrated loads, the contributions of these nodal loads 
are directly assembled into the externally applied load vector. 

For pressure loading, distributed loading, centrifugal loading 
and mass proportional loading, Advanced Nonlinear Solution first 

(co
and
load vector. The evaluations of the consistent nodal load vectors for 
the s. 
 
• 
con h include temperature 
eff

command can point to a DLOAD entry or directly to a TLOAD1 
entry. The initial and applied temperature load sets must be 
selected by the TEMPERATURE case control command if needed.
The active initial conditions must be selected by the IC case control
command. 
 

and natural boundary conditions (see ref. KJB, Section 3.3.2). 
Essential boundary conditions can be enforced displacements or 
rotations. Natural boundary conditions include all applied forces 
and moments. 
 
• Displacement boundary conditions include fixed nodal degre
of freedom, en
 
• Force and moment boundary conditions include numerous type
of applied loading available in Advanced Nonlinear Solution. 
 
•
the displacement coordinate system at the node at which they act. 
 
• The externally applied load vector used in the governing 
equilibrium equations is established using contrib

calculates the corresponding consistent nodal load vectors 
nsistent in the sense that the principle of virtual work is used) 
 then assembles these load vectors into the externally applied 

 various types of loading are described in the following section

Temperatures in Advanced Nonlinear Solution are used in 
junction with material models whic

ects. 
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• an be associated 
wi  
thr
 
f In a static analysis in which time-dependent effects (such as 

e is 

d 

Each applied load or enforced displacement c
th a time function which defines the time variation of the load
oughout the solution period (see example in Fig. 5.1-1). 

creep or friction) are not included in the material models, tim
a "dummy" variable which is used, via the associated time 
function of each applied load, to define the load intensity at a 
step. Thus, the time step increment directly establishes the loa
increments. So, in the example shown in Fig. 5.1-2, the same 
solution is obtained regardless of the size of the time step 
increment. 
 

tR

tR tR

� �

� �

200

100

200

1002 steps 2 steps

1 2 2t t4

Run 1: t = 1.0� Run 2: t = 2.0�

Note: identical results are obtained in Run 1 and Run 2

for a linear static analysis.

150

 
 

 
t 
 

e 
integration of the element stresses in a creep analysis. Hence, in 

150

Figure 5.1-2: Example of time varying loads  

f In a dynamic analysis or if time-dependent effects are 
included in the material models in a static analysis, time is used
in a similar way to define the load intensity of an applied load a
a step. However, in these cases, time is a "real" variable because
the time step increment is employed in the actual integration of 
the equations of motion in a dynamic analysis, and in th
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ase, 
with any time function and the 

me variation of the loads cannot be specified by the user. The 

vector denoted as the reference load vector. During the response 
calculation, this reference load vector is scaled proportionally using 
a load multiplier (in general different from one step to the next) that 
is automatically computed by the program. 

 
• The activation of the various applied loads can be delayed using 
the X1 field in the TABLED2 entry. The arrival/delay time option 
does not apply, however, to centrifugal and mass-proportional 
loading, see Section 5.4. 

The specification of a nonzero arrival time corresponds to a 

 
using a time function multiplier of zero for all times t smaller than 
the arrival time; see illustrations given in Fig. 5.1-3. However, if 
the time
the asso  be free prior to 
the iv  zero prescribed value). 

these cases the choice of the time step increment is no longer 
arbitrary. 

 
• The effect of the time functions on the magnitude of the load is 
different in the case of Load-Displacement Control (LDC) method 
of Solution 601 (arc length method, see Section 6.2.6). In this c
the applied loads are not associated 
ti
contributions from all the loads are assembled into a constant load 

shifting of the associated time function forward in time. If the time 
function is used by a force boundary condition, this corresponds to

 function corresponds to a enforced displacement/rotation 
ciated degrees of freedom are assumed to

arr al time (not having a
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Time functions:

4

3

f(t) Input time function Time function shifted
by arrival time

2

-3

ution

t

1

-1

-2

2 4 6 8 10
Arrival
time Load active

Solution period

Time at sol
start=0.0

Figure 5.1-3: Example of the use of the arrival time option  
 

 

5.2  Concentrated loads 

• Concentrated loads are nodal point forces applied at the 
specified nodes using the FORCE, FORCE1, or FORCE2 entries. 
Concentrated moments are also applied to specific nodes using the 
MOMENT, MOMENT1, or MOMENT2 entries. Concentrated 
forces on beam nodes can also be applied using the PLOAD1 entry. 
 
 

 

the shell nodes automatically to 6 degree of freedom nodes. This is 
done since the local V1 and V2 directions at shell nodes are 
unknown to the user, and hence cannot be used in defining 
mo s. 

 
• When the FORCE1 or MOMENT1 entries are used in a large 
displacem
direction of the applied force or moment can be updated during the 

• The direction in which a concentrated load acts depends on the 
displacement coordinate system assigned to the node.  

 Note that concentrated moments applied to shell nodes convert •

ment

ent analysis, they can be follower loads, meaning that the 
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2 
e 

 in 

simulation based on the current coordinates of the G1 and G
nodes. This however is only possible if either G1 or G2 is set to b
the node of load application. 
  
• The direction of a follower load can be controlled using RBAR 
or RBE2 rigid elements (see Section 2.7). An example is given
Fig. 5.2-1. 
 

Thin cantilever

Rigid element

Node of load

applicati

G1

on

a) Configuration at time t=0

Note: t is the rotation at node�k k at time t.

Rigid element

t
k�

G2

Follower force

at time t

b) Configuration at time t

Follower force

at t = 0

G2

G1

ple of the use of a rigid element to establish the

 

 

Figure 5.2-1: Exam
follower load direction
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5.3  Pressure

n 

 and distributed loading 

• Some examples of pressure and distributed loading are shown i
Fig. 5.3-1. 
 

a) Axisymmetric 2-D solid element

PLOADX1 PLOAD, PLOAD4

b) 3-D solid element

PLOAD1 PLOAD, PLOAD2, PLOAD4

�

�

�

�

�

�

�

c) Beam element d) Shell element

Figure 5.3-1: Examples of distributed and pressure loading 
 
• Distributed loads can be applied to beam elements using the 
PLOAD1 entry. This entry can also be used to apply concentrated 
forces on beam nodes. 
• Pressure loads can be applied to shell elements using the 
PLOAD or PLOAD4 entries, and to shell 3-node and 4-node 
elements only (CTRIA3 and CQUAD4) using the PLOAD2 entry. 
 
• Pressure loads can be applied to axisymmetric 2-D solid 
elements using the PLOADX1 entry. Pressure loads are input as 
force per unit area. 
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• Pressure loads can be applied to plane stress or plane strain 2-D 
solid elements using the PLOADE1 entry. Pressure loads are input 
as 
 es of 
plane stress elements do not take into account the change in 
element thickness due to in-plane deformations. For example, a 
plane stress element that undergoes uniaxial tension due to a 
deformation-dependent pressure load has internal stresses larger 
than the pressure load by the ratio (original thickness)/(current 
thickness)  

 
• Pressure loads can be applied to the faces of 3-D elements 
(HEXA, CPENTA, CTETRA, CPYRAM) using the PLOAD or 
PLOAD4 entries. 

• When applied through the PLOAD4 entry, the pressure can be 

 For each pressure/distributed load surface specified, a consistent 
nodal load vector is calculated to represent the pressure/distributed 
loa

•  pressure/distributed 
loading can be specified as deformation dependent for all element 
typ ter in the NXSTRAT entry. In this 
case, the calculations of the consistent load vectors are based on the 

test geometry and configuration of the loading surface. 

y be 
ent analysis. Equilibrium iterations (see 

hapter 6) should in general be performed if deformation 

ection for distributed loads can be along the 
basic coordinate system or the element coordinate system. Loads 

 systems can be deformation dependent in 
large displacement analysis. 

 
• For pressure loading on 2-D and 3-D solid elements, the 
consistent load vector consists of nodal forces acting on the 
translational degrees of freedom only. The calculation of this load 

force per unit area.  
Deformation-dependent pressure loads that act onto the edg

 

normal to the face of the element, or along a specified direction. 
 
•

ding.  
 

In a large displacement analysis, the

es via the LOADOPT parame

la
 
• In Solution 601, deformation dependent loading should onl
used in a large displacem
C
dependent loading is present. 
 
• The loading dir

along element coordinate
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vector is given in ref. KJB, Section 4.2.1. The same effect occurs in 
shells since the nodal translations and rotations are interpolated 
independently. 
 
• The distributed loading on a beam element results in equivalent 
concentrated forces and moments acting at the beam nodes as 
shown in Fig. 5.3-2. The calculati
mo
 

on of these consistent forces and 
ments also follows the equations in ref. KJB Section 4.2.1. 

� �

L

q1

q2

1 2

(a) Beam distributed loading

(b) Fixed-end forces/moments representation

� �

L

F =
L
20

(7q + 3q )2 2 1F =
L
20

(7q + 3q )1 1 2

M =
L

60
(3q + 2q )1

2
1 2 M =

L

60
(3q + 2q )2

2

2 1

Figure 5.3-2: Representation of beam distributed loading  
 

• Displacements and stresses in the m el are calculated by 
representing the actual distributed loading using the consistent load 
vector defined above. Hence, the calculated solution corresponds 
on
and
acc

od

ly to these equivalent concentrated nodal forces and moments, 
 may not correspond entirely to beam theory results taking 
ount of the distributed loading more accurately, see Fig. 5.3-3. 
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In 
bea  are required between sections A and B. 

 

order to capture the applied moment more accurately, more 
m elements

�� � �

A B

a) Actual beam structure bending moment diagram

Bending

MA

b) Finite element bending moment diagram

using 3 beam elements

A B

M

moment

Bending

moment

MB

A
MB

Figure 5.3-3: Beam element bending moments when subjected
distributed lo

to
ading  

5.4  Inerti
loadin

 

 Ce nd 
ma
 

 

a loads ─ centrifugal and mass proportional 
g 

• Centrifugal and mass proportional loading can be used to model
the effect of body forces which arise from accelerations to which 
the structure is subjected. 
 
• ntrifugal loading is generated using the RFORCE entry, a

ss proportional loading is generated using the GRAV entry. 
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•  calculation of centrifugal and mass 
proportional loading can be lumped or consistent depending on the 
ma putational 
effort involved in the evaluation of a lumped mass matrix is, in 
gen  a consistent mass matrix. 
 
• sent 
in 
ma namic 
res
 
• 
loa oad vector consists 

t all times) only of the contributions from the elements currently 
ali
 
 Centrifugal and mass proportional loading cannot be applied 

n 

 
entrifugal loading 

 
• sistent load vector for centrifugal loading is computed 
as follows (see Fig. 5.4-1): 

 
 

The mass matrix used in the

ss setting for the whole model. Note that the com

eral, much less than the effort for

Centrifugal and mass proportional loading can both be pre
a static or dynamic analysis. In a dynamic analysis, the type of 
ss matrix employed in the load calculation and in the dy
ponse calculation are the same. 

When elements die (due to rupture), their contribution to the 
d vector is removed. Hence, the consistent l

(a
ve. 

•
with a delay/arrival time. The time function has to be shifted 
manually to create this effect. 
 
• Centrifugal or mass proportional forces at fixed nodes are take
into account in the calculation of reaction forces. 

C

The con

( )( )t t t t dVρ= − × ×∫R ω ω r  (5.4

ere ( )

-1) 

 

wh ( )t A f tπ= 2ω R  is the angular velocity vector, tr  is 

 the axis of rotation to the node, A is the scale 
, in revolutions/unit time, ρ is the 

 proportional to the 
e function f(t).  

 

the radial vector from
factor of the angular velocity
density,  f(t) is the time function, and R (no left superscript) is the 
rotation vector.  

Note that the centrifugal force is directly 
tim
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x

y

z

= angular velocity vector

G

Centrifugal loads

Structure

't'''t''

Figure 5.4-1: Convention used for centrifugal loading  
 

 
• nlinear analysis in 
Solution 601, additional nonlinear terms are added to the stiffness 
matrix and the load vector. These additional nonlinear 
contributions are described in the following. Let the equilibrium of 
the finite element system be calculated at time t + ∆t, iteration i. 
Then 

 

When centrifugal loading is used in no

( ) ( )1 1( ) ( ) ( )i it t t i t t i t t i t t− −+∆ +∆ +∆ +∆+ ∆ = −M U K U R F  (5.4-2) 

( )

t+∆

 
where M = mass matrix, K = stiffness matrix = 

0

= acceleration vector, 
L NL+K K , U  

∆U  = incremental displacement vector, R = 
external load vector, F = nodal point forces corresponding to 
stresses, (i) = iteration i, and t + ∆t =  time t + ∆t. 

 

 

The complete expression of the load contribution due to 
centrifugal loading, including all nonlinear effects is 

( )( )( )( ) 0 ( 1) ( )t t i t t i iρ+∆ +∆ −= − × × +∫R ω ω r dV+ ∆U U  

 (5.4-3) 
 

where  = initial radial vector from the axis of rotation to the 
node and  = rotation vector. From the expression (5.4-3), it can 
be seen that an additional nonlinear contribution 

0r
ω

1NLK  to the 
stiffness matrix is present, which is given by 
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( ) ( )( )1NL dVρ∆ = × × ∆∫K U ω ω U   1 ( ) ( )it t i i−+∆

 
nd that a deformation-dependent load is present, given by 

 
 

a

( ) ( )( )( 1)it t t t i
NL dVρ+∆ +∆ −= − × ×∫R ω ω U  

• Nonlinear centrifugal loading can be used in static analysis an
dynamic analysis. 

 
d 

 

ted 

 

 
 

inite 

 
 a=R M d  (5.4-4) 
 

 

in 

 

 ent away from the ground), 
enter 

• The correction to the stiffness matrix and the correction to the 
loading are made when deformation dependent loading is reques
(LOADOPT parameter in the NXSTRAT entry). 

Mass-proportional loading 

• The consistent load vector for mass proportional loading in
direction i is computed using the mass matrix of the entire f
element system and the specified accelerations (only in the 
translational degrees of freedom), as follows: 

t t t
i i i

where id  is a direction vector with "1" in the portions of the 
translational degrees of freedom acting into the direction i and "0" 
in the other portions, and ai is the acceleration magnitude in the 
direction i. 
 In the calculation, the mass coupling term between active and
deleted degrees of freedom is included. This mass coupling term 
can be clearly seen in the discussion of ground motion loads later 

is section. th

• Mass proportional loading is commonly used to model gravity 
loading. For gravity loading, t

ia  is the acceleration vector due to 
gravity. For example, for the z coordinate in the vertical direction 
(increasing z corresponds to movem

t
za g= − , where g is the (positive) acceleration due to 

gravity. 
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 Mass-proportional loads are frequently used to model ground 

or 

 

•
motions. The basis for using mass-proportional loads in modeling 
ground motions is given briefly now. The equations of motion f
linear dynamics, not including damping but including ground 
motions, are  

11 12 1 11 12 1 1

12 22 2 12 22 2 2
T T

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ -5) 

 
t 

 the ground and  is the vector of nodal point 
displacem  are 
externally applied forces (for example, concentrated forces).  
 When the ground motions are the same at all nodes attached to 
the ground, 

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

M M x K K x R
M M x K K x R

 (5.4

where 1x  is the vector of nodal point displacements for nodes no
attached to  2x

ents for nodes attached to the ground. 1R , 2R

1 1 1i gix= +x u d , 1 1 1i gix= +x u d , 2 2 2i gix= +x u d , 

2 2 2i gix= +x u d , where  is the vector of nodal point 
displacements relative to the ground for nodes not attached to the 
ground and  is the vector of nodal point displacements relative 

1u

2u
, 2 =u 0to the ground for nodes attached to the ground. Clearly . 

 is the direction vector for the nodes not attached to the 
gro  the 

 

1

2 212 12 22 2
T T

i gi i gix x
⎡ ⎤
⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎠ ⎝ ⎠

M
d dM K K R0

 .4-6)  
 

212 22

i

i

1idAlso 
und and 2id  is the direction vector for the nodes attached to

ground, with “1” in the portions of the translational degrees of 
freedom acting into the direction i  and “0” in the other portions.  
 The matrix equation of motion becomes 

1 112 11 121 1

22

i gi i gix x⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤⎤ ⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤
+ + + =⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦⎝

d dM K K Ru u
M 0

11

 (5

Now 11 12
T

⎡ ⎤⎡ ⎤ 1 ⎡ ⎤
⎢ =⎢ ⎥⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦dK K 0
 since the vector = ⎢ ⎥

⎣ ⎦
d

d
 

corresponds to a rigid body motion. The matrix equation of motion 
bec

 

dK K 0 ⎡ ⎤d1

2

i
i

i

omes  
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111 12 11 12 1 11 121 1

212 22 12 22 2 12 22

i gi
T T T

i gi

x
x

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
+ = − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

dM M K K R M Mu u
dM M K K R M M0 0

  (5.4-7)  
and therefore the system of equations solved is 

 
11 1 11 1 1 11 1 12 2i gi i gix x+ = − −M u K u R M d M d  (5.4-8)  

 
The mass coupling term between active and deleted degrees of 
freedom ( 12 2i gixM d ) is included. 
  is seen that the ground acceleration can be applied to the 
model as a mass-proportional load, provided that the resulting 
nodal point motions are interpreted as motions relative to the 
ground.  
 Please note: 

 
f To enter a positive ground acceleration 

It

gix , specify a 

negative mass-proportional load 
 

f All single-point fixities are relative to the ground. In other 
words, fixing a node attaches it to the ground. 

 
f All enforced displacements are relative to the ground. 

 
f All single DOF scalar elements are attached to the ground. 

 
Damping can be used. However, scalar dampers and single DOF 
damping scalar elements are attached to the ground. Mass-
proportional Raylei ing acts relative to the ground  
 
dy

5.5  Enforced

•  be 
app near Soluti
con
mo  
des
 

ia . 

gh damp  motion.
Although we have illustrated the procedure only for linear 

namics, the procedure is also valid in nonlinear dynamics. 

 motion 

Enforced displacements at specified degrees of freedom can
lied in Advanced Nonli on using the single point 
straint entries (SPC, SPC1, or SPCADD) or the enforced 
tion (SPCD) entry. The applied displacement can be constant or
cribed by a time function. 
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• re not supported. 
 

• Nodal point translations and rotations can be enforced. The 
degree of freedom
sys
 
• fixed" by prescribing a zero displacement 
com
ho single-point 
constraint on the GRID entry because the enforced degrees of 
freedom are retained in the syst trices (i.e., equation numbers 
are assigned) whereas the degrees of freedom at which permanent 
GRID constraints are imposed are deleted from the system 
ma ices. 

 
• ed on 
contactor surfaces (see Chapter 4). 
 
• Delay or arrival times can be used for applied displacements. In 
this case, the displacements are free before the arrival time. Once 
the arrival time is reache lacements are set to their 
enforced values. However, the enforced value can be interpreted as 
an absolute or total displacement or as a relative displacement 
bas his is controlled by 

• A new enforced displacement can also be applied in a restart 

5.6  Applie

• In Advanced Nonlinear Solution, temperature can be prescribed 
in any structural analysis. In addition, in heat transfer and TMC 
analyses, temperature can be prescribed at certain parts of the 
model, and the program will solve for the complete temperature 
field. 
 
• Temperature can be applied directly to a node using the TEMP 
entry or to the whole model using the TEMPD entry. Direct nodal 
values applied with TEMP override the default TEMPD value. This 

Enforced velocities and accelerations a

 is in the direction of the displacement coordinate 
tem  assigned to the node. 

A nodal point can be "
ponent for all degrees of freedom at this node. This is, 

wever, different from imposing a permanent 

em ma

tr

Note that enforced displacements are not recommend

d, the disp

ed on the configuration at the arrival time. T
the DISPOPT flag in the NXSTRAT entry. 
 

run. In this case as well, the displacement can be a total value or 
relative to the configuration at the start time of the restart analysis. 

d temperatures 
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is applicable to structural analysis, and to initial conditions for a 
heat transfer analys
 
• The TEMPERATURE case control command selects the initial 

ns are 
 entry or the SPC entry. 

D command as explained in the beginning of this chapter. 
 
• ro arrival time option is us d in the ature 
definition, then the time function value will be zero when the 
sol less than the arrival time. 
 
!  
the
tha
neg the nodal po t 
temperatures are all non-negative. This is illustrated in Fig. 5.6-1 
(se ). This observation can be important when 
performing an analysis with temperature-dependent material 
pro
 

is. 

or reference temperature field. 
 
• In heat transfer analysis, temperature boundary conditio
applied using the TEMPBC
 
• The applied temperature can also be made time dependent by 
using the TLOAD1 entry, and referencing the TLOAD1 in the 
DLOA

If a non-ze e  nodal temper

ution time is 

It should also be noted that when using higher-order elements,
 temperatures can be significantly different within the element 
n at the nodal points. For example, the temperature can be 
ative at points within an element, although in

e element 1

perties. 
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Figure 5.6-1: Interpolation of temperature boundary conditions 
 

5.7  Bolt preload 

• Advanced Nonlinear Solution supports the preloading of bolt 
elements. The bolt preloads or forces are applied at an extra 
solution step performed at the very beginning of the analysis prior 
to the rest of the step-by-step solution. 
 
 The bolt preloads are applied via the BOLTFOR entry which 

should be used together with a BOLTLD case control command. 
 

ilable in Solution 

•

• Bolt preload (and bolts in general) are only ava
601. 
 
• See Section 10.7 for more details on the bolt feature. 
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5.8  Const

r

however, totally  from 
the solution. 
 
 MPC and 

pe 

s: 

raint equations 

• Advanced Nonlinear Solution supports single-point  and 
multipoint constraints. The single-point constraints a e defined 
using the SPC, SPC1, SPCADD entries. Permanent single-point 
constraints can also be defined using the GRID entry. This case, 

 removes the associated degree of freedom

• Multipoint constraints are defined directly using the 
MPCADD entries. They can also be defined through R-ty
elements (see Section 2.7). 
 The following relationship holds for multipoint constraint
 

0j j
j

R u =∑  

 
• Constraints can be enforced in two ways. The default is for the 

rst degree of freedom in each constraint (u ) to be a dependent 

to add a Lagrange multiplier to enforce each 
constraint, and hence keep all constraint degrees of freedom 
independent. This is done by setting parameter GENMPC=1 in 
NXSTRAT, and it applies to
 

he 

h that dependent degrees of 
. 

 
• Multipoint constraints are only approximately satisfied in an 
explicit analysis (Solution 701), since imposing the constraint 
exactly requires a non-diagonal mass matrix. 
 
 

fi 1
degree of freedom. The second approach (called general constraints 
approach) is 

 all constraint equations. 

• Note that in the first approach, each constraint reduces t
number of independent equations by one, while in the second 
approach, each constraint adds one extra degree of freedom (the 
Lagrange multiplier). Hence, the first approach should be used 
whenever possible. In some cases, however, one cannot easily 
xpress a constraint in a way suce

freedom are not constrained to other dependent degrees of freedom
 
• General constraints (GENMPC=1 in NXSTRAT) cannot be 

sed in explicit analysis (Solution 701). u
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• For R-type elements in large deformation the multipoint 
constraint can have variable coefficients that are updated based on 
the deformation of the structure. 

 
 

 note that adding constraint equations to the 
finite element model results in adding external forces (and possibly 

ction calculations.  
 
• No e detailed in Section 5.5 are 
internally enforced using single-point constraints. 
 
• For an R-ty ltipoint constraints with 
changing coefficients that capture large deformations, the 
constraints mu
nodes should possess all the independent degrees of freedom and 
the other e
These large displacem
called rig n
 
• Mesh glueing (Section 5.9) intern
equations that are enforced using Lagrange multipliers. All 
independent degrees of freedom associated with the glued mesh 
remain independent. 

5.9  Mesh glueing 

• The mesh glueing feature is used to attach two surfaces 
together. These two surfaces usually involve different finite 
element meshes (see Fig. 5.9-1). The glueing procedure results in a 
smooth transition of displacements and tractions between the glued 
surfaces. Mesh glueing sets are defined in the BGSET entry, and 

• Constraints can be applied in static and dynamic analyses.
 
• It is important to

moments) at the degrees of freedom specified by the constraint 
equations. These forces are included in the rea

te that nforced displacements 

pe element to produce mu

st be between only 2 nodes. In addition, one of the 

 nod  should only possess dependent degrees of freedom. 
ent multipoint constraints are internally 

id li ks. 

ally creates general constraint 

the glued surfaces are defined via the BSURFS or BCPROPS 
entries. 
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Mesh glueing along dashed lines

Figure  5.9-1: Examples requiring mesh glueing

 
 This feature is useful for several applications: 

 
f When a fine mesh is desired in a certain region an
meshes are desired in other regions. 
 
f When different regions are meshed independently with 

 
f When different regions are mesh
types (such as a tetrahedral mesh attached to a brick m

 proper glueing constraint between the two surfaces can be 
xpressed as 

 0

•

d coarser 

unstructured free meshes. 

ed with different element 
esh).  

 
 The•

e
 

1 2( )u u dλ
Γ

⋅ − Γ =∫  (5.9-1) 

 

displacement of the second surface and λ is the Lagrange multiplier 
field imposing the constraint. 
 One of the glued surfaces is designated as the master and the 
other as the slave. The Lagrange multiplier field involves nodal 
degrees of freedom at the nodes of the slave surface, and the 

where u1 is the displacement of the first glued surface, u2 is the 
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 Eq. 

0M S Su d
Γ

integration is also performed over the slave surface. Hence
(5.9-1) becomes 
 
  (S uλ )

S
⋅ − Γ =  (5.9-2) 

 The accurate integration of Eq. (5.9-2) is not trivial since the 
dis
do
Nonlinear Solution. 
 
• 
 
• rior to tied contact and should be used in its 
place whenever applicable. 

nts can be used in glueing. T e glued 
ngles or quads, and they can have linear or 

refore, they cannot 

ork if the smaller surface is the 
a

no 
ers). If corners exist it is better to create multiple glued 

ill produce 
ations, since the Lagrange multipliers degrees of freedom 
 nodes of the slave surface. 

∫
 

placements uM and uS are generally interpolated over different 
mains. This integration is automatically performed by Advanced 

Mesh glueing is not available in Solution 701. 

Glueing is supe

 
• Only 3-D solid eleme h
element faces can be tria
quadratic displacement interpolation. Shell elements are not 
supported. 
 
• Nodes on glued surfaces (both master or slave) cannot have 
dependent translation degrees of freedom. The
be slaves in multi-point constraints involving translations. 
 
• If one glue surface is smaller than the other, as shown in Fig. 
5.9-2(a), the smaller surface should preferably be the slave. 
However, the glueing will also w
m ster. The two glued surfaces can also be partially overlapping as 
shown in Fig. 5.9-2(b). 
 
• The two glued surfaces should ideally be smooth surfaces (
sharp corn

eshes. m
 

• If the two surfaces have different mesh densities, either one can 
be used as slave (unlike contact where the finer one should be the 
contactor). Using the finer meshed surface as a slave w
more equ
are on the
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Master surface

Slave surface

Master surface

Slave surface

Glue surface 1

Glue surface 2

 Figure 5.9-2: Examples of master and slave glue surfaces

 
• The master glue surface can be enlarged beyond its geome
bounds, so that the slave points that project slightly outside th
master can still be considered glued. This is done via the EXTi 
parameter in the BGSET card. 

tric 
e 

5.10  Convection boundary condition 

 
 

! Convection boundary conditions take the following form 

( )S S
eq h θ θ= −  

 
where h is the convection coefficient, eθ  is the external ambient 

temperature, and Sθ  is the unknown  surface temperature. 

! Convection boundary conditions are applied using surface 
elements generated using the CHBDYE  or CHBDYG entities 
which point to a CONV entry. This entry provides some of the 

body
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necessary inputs and in turn points to a PCONV entry providing 

 
!  
available: 

 
Line convection boundary conditions, used in conjunction with 

ements
 

nction 
olid or shell elements. 

 
ure-

dependent (through a MATT4 or MATT5 entry), or time-
 the Control Node setting in the 
er, be both temperature and time 

 

more input. The heat convection coefficient h is provided in the 
material definition entries. 

The following types of convection boundary conditions are

2-D planar elements and 2-D axisymmetric el . 

Surface convection boundary conditions, used in conju
with 3-D s

! The convection coefficient h can be either temperat

dependent. This is achieved via
CONV entry. It cannot, howev
dependent. 

! The ambient temperature eθ  is obtained from node using 
parameter TA1 in the CONV entry. The temperature at node TA1 

ust be prescribed, and can be timm e-varying. 

nsistent 

coefficient, h, is temperature dependent, it is calculated for each 

5.11  Radiation boundary condition 

ke the wing form 

 

 
! The heat flux, qS, is converted to nodal heat fluxes by co
integration over the convection boundary. See ref. KJB, Section 
7.2.3 for details. In this integration, the temperatures are 
interpolated from their nodal values, and if the heat transfer 

integration point based on its interpolated temperatures.

! Radiation boundary conditions ta  follo
 

( )( )44S S
rq f eσ θ θ= −  

 
where σ  is the Stefan-Boltzmann constant, f is a view factor or 

e is the material emissivityshape factor, , rθ  is the temperature of 
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the radiative source (or sink) and Sθ  is the unknown body surfa
temperature. Both temperatures are in the absolute scale. N
in the above equation th

ce 
ote that 

e absorpt  is assumed to be equal to the 
em

ing surface 
lements generated using the CHBYDE or CHBYDG entries which 

σ

 

 
Line radiation boundary conditions, used in conjunction with 2-
D planar elements and 2-D axisymmetric elements. 

 
Surface radiation boundary conditions, used in conjunction 
with 3-D solid or shell elements. 

 
! The emissivity coefficient e can also be temperature-dependent 
by using the RADMT entry. 

 
! 

ivity
issivity. 

 
! Radiation boundary conditions are applied us
e
point to a RADBC entry. This entry provides some of the necessary 
inputs and in turn points to a RADM or RADMT entry providing 
the rest of the inputs. 
 
! The Stefan-Boltzmann constant (σ)  and the absolute 
temperature offset are set in PARAM entries (SIGMA and TABS 
parameters). Note that although  is a constant it must be input in 
the proper units. 

! The following types of radiation boundary conditions are 
available: 

The radiative source/sink temperature rθ  is specified in the 
NODAMB parameter in the RADBC entry. The temperature at this 
node NODAMB must be prescribed, and can be time-varying. 

 
! The view or shape factor f is input via the FAMB parameter in 
the RADBC entry. 
 
! Default values of some radiation settings are defined using the 
BD
 
! The heat flux, qS, is converted to nodal heat fluxes by consistent 
integration over the radiation boundary. See ref. KJB, Section 7.2.3 

YOR entry. 



 5.11: Radiation boundary condition 
 

 
 
Adva

for details. In this integration, the temperatures are interpolated 
from their nodal values, and if the emissivity, e, is temperature 
dependent, it is calculated for each integration point based on its 
interpolated temperatures. 

 

5.12  Boundary heat flux load 

! Applied boundary heat flux is specified by equation (8.1-3):  
 

 

ref. KJB
Section 7.2.1

2

S
n

S

k q
n
θ∂

=
∂

 

 
me 

tivity in 
ection n, the outward normal to the surface, and θ is the 
perature. 

 
! Boundary heat flux loads are applied either directly to the nodes 
defining a face of an element using the QHBDY entry, or by 

 

where Sq  is the surface heat flux input to the body across so
part S2 of the body surface, nk  is the body thermal conduc
dir
tem
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pointing to existing surface elements (CHBDYi type) using the 
QBDY1 or QBDY2 entries. 
 

 nt 
integration over the boundary. See ref. KJB, Section 7.2.3 for 

 

! The heat flux, qS, is converted to nodal heat fluxes by consiste

details. 

! Note that any boundary of the domain which does not have 
either the heat flux or temperature specified will be assumed by 
virtue of the formulation to have  
 

Sq 0=  

i.e., this part of the boundary is insulated, allowing no heat transfer 
across it. 
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5.13  Inter

! his form of thermal loading results from the generation of heat 
within the domain, which is introduced into the governing equation 
system by the term qB of equation (8.1-1). 
 
! Internal heat generation is applied via the QVOL entry which 
provides a load multiplier to the heat generation parameter HGEN 
set in the MAT4 or MATT4 entries. 

B

 

making the HGEN parameter temperature dependent using the 
MATT4 entry
 
!  generated per unit volume, qB, is converted to 
nodal heat fluxes by
volum
 

nal heat generation 

Tref. KJB
Section 7.2.3

 
! A negative heat generation term q  indicates a loss of heat 
within the body. 

! The heat generation term can be temperature-dependent by 

. 

The heat flux
 consistent integration over the element 

e. See ref. KJB, Section 7.2.3 for details.  



 6.1:  Linear static analysis 
 

 
 
Advanced No

6. Static and implicit dynamic analysis 
 

 

to be input in this chapter are in the NXSTRAT 
bulk data entry. 
 Information about the progress of the solution is always output 
to the .f06 file. A shorter summarized output is provided in the .log 
file. 

6.1  Linear static analysis 

• In linear analysis using Solution 601, the finite element system 
equilibrium equations to be solved are 

 

• A direct sparse solver, iterative multi-grid solver or 3D iterative 
solver can be used to solve this system of equations, see Section 

.5. 

 is 

ix is 
an be summarized as follows: 

he Rayleigh quotient  
 

 

This chapter presents the formulations and algorithms used to solve
static and dynamic problems using Solution 601. This includes 
convergence checking and the available solvers. Most flags or 
constants that need 

ref. KJB
Sections 8.2.1,
8.2.2 and 8.2.3 KU = R  
 

6
 
• The equation solvers assume that the system stiffness matrix
symmetric. 
 
• The equation solvers assume that the system stiffness matr
positive definite. This requirement c
T
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( )
T

T

Kρ =
φ φ

φ
φ φ

 

must be greater than zero for any displacement vector . Since φ

( )ρ φ  is equal to twice the strain energy stored in the system
T

 (for 

=1φ φ ), this is equivalent to the requirement that the strain 
energy stored in the finite element system when subjected to any 

φdisplacement vector  must be greater than zero. 
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e finite element system must be properly 
supported, so that the system cannot undergo any rigid body 
dis
 
f  also follows that no part of the total finite element system 

u  
such a case. 

f Nodal point degrees of freedom for which there is no 
 degree of freedom does not carry 

any stiffness if all of the elements connected to the nodal point 

degree of freedom must be restrained using boundary 
conditions. 

ed 
t nodes in 

constraint equations are automatically deleted by the program. 
 

are 

6.2  Nonlinea

• 
sol

 
 

f Hence, th

placements or rotations. 

It
m st represent a mechanism, see ref. KJB, Fig. 8.7, p. 704, for

 

stiffness must be restrained. A

do not carry stiffness into that degree of freedom. In this case 
the 

Note that nodal degrees of freedom which are not connect
to any elements and are not used as dependen

f More details on the solvers available in Solution 601 
provided in Section 6.5. 

r static analysis 

In nonlinear static analysis the equilibrium equations to be 
ved are:  

t t t t+∆ +∆− =R F 0  
 

 equiva  
e t+

kinematic assum n dependent loading, the 
presence of contact, or the element birth/death feature. 

 
 
 
 
 

 
ref. KJB

Section 8.4

where t+∆tR is the vector of externally applied nodal loads at time 
(load) step t+∆t, and t+∆tF is the force vector lent (in the
virtual work sense) to the element stresses at tim ∆t. 
 
• The nonlinearity may come from the material properties, the 

ptions, deformatio
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• The solution to the static equilibrium equations can be obtained 
in Solution 601 using 
 
f Full Newton iterations, with or without line searches 
 
f Load-displacement-control (LDC) method (arc length 
method) 
 

These methods are described in detail in the following sections and 
also in Sections 6.1

on solvers are used for both linear and 
onlinear analysis. However, the automatic time stepping 

algorithms do not require the stiffness matrix to be positive 
definite, thus allowing for the solution of bifurcation problems. 
 
• The stiffness stabilization feature can be used to treat some 
nonlinear static problems involving a non-positive definite stiffness 
matrix. See Section 10.6 for details. 

 
6.2.1  Solu

 

 

 

 and 8.4 of ref. KJB. 
 
• The same equati
n

tion of incremental nonlinear static equations 

Full Newton iterations: In the full Newton iteration method, the 
following algorithms are employed: 

f Without line search 
 

( 1) ( ) ( 1)t t i i t t t t i+∆ − +∆ +∆ −∆ = −K U R F  (6.2-1a)

( ) ( 1) ( )t t i t t i i+∆ +∆ −= + ∆U U U  

 
 
 (6.2-1b) 
 

f With line search 
 
 ( 1) ( ) ( 1)t t i i t t t t i+∆ − +∆ +∆ −∆ = −K U R F  (6.2-1c) 
 
  (6.2-1d) 
 

( ) ( 1) ( ) ( )t t i t t i i iβ+∆ +∆ −= + ∆U U U

where ( 1)t t i+∆ −K  is the tangent stiffness matrix based on the 
solution calculated at the end of iteration (i - 1) at time t+∆t, t t+∆ R  
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 the externally applied load vector at time t + ∆t  is the 
consistent nodal force vector corresponding to the element stresses 
due to the displacement vector 

; ( 1)t t i+∆ −F

( 1)t t i+∆ −U ; 

is

∆U(i) is the incremental 
isplacement vector in iteration (i) and β(i) is an acceleration factor 

obtained from line search. Note that, since the full Newton iteration 
method is employed, a new stiffness matrix is always formed at the 
beginning of each new load step and in each iteration. 
 
• An upper bound for the incremental displacements in ∆U can be 
et by the user (via the MAXDISP parameter in the NXSTRAT 

entry). If the largest increment displacement component exceeds 
the limiting value, the whole incremental displacement vector is 
scaled down to satisfy the upper bound. 
 This feature is useful for problems where one or more iterations 
can produce unrealistically large incremental displacements. This 
may happen, for example, if a load is applied to contacting bodies 

efore contact is properly established, or in the first unloading steps 
after a material has undergone plastic deformation. 
 The default (MAXDISP=0.0) is  

f Dynamic analysis or analysis without contact: no limit on 
incremental displacements 
 
f Static analysis with contact:  maximum incremental 
displacement is 1% of the maximum model dimension.  
 

6.2.2  Line search 
 

 The line search feature is activated by setting LSEARCH=1 in 
NXSTRAT. In this case, the incremental displacements obtained 
from the solver are modified as follows 

 
 

where β is a scaling factor obtained from a line search in the 
direction ∆U(i) in order to reduce out-of-balance residuals, 
according to the following criterion 

 

d

s

b

 

 
( ) ( 1) ( ) ( )t t i t t i i iβ+∆ +∆ −= + ∆U U U  
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( ) ( )

( ) ( 1)
STOL

Ti t t t t i

Ti t t t t i

+∆ +∆

+∆ +∆ −

⎡ ⎤∆ −⎣ ⎦ ≤
⎡ ⎤∆ −⎣ ⎦

U R F

U R F
  (6.2-2) 

 
where STOL is a user-input line search convergence tolerance (in 
NXSTRAT), and t+∆tF(i) is calculated using the total displacement 
vector t+∆tU(i). 

 
 

 The magnitude of β is also governed by the following bounds 

LSLOWER LSUPPERβ≤ ≤  (6.2-3) 
 

h

 energy threshold ENLSTH. 
 

s 

 
ent 

erged solution. This usually 
p

  

. However, for the types of problems 
entioned above the reduction in the number of iterations and the 

ability to use bigger time steps leads to an overall reduction in 
solution time. 
 
 
 

w ere LSUPPER and LSLOWER are user-input parameters in 
NXSTRAT. 
 The incremental displacements are not modified (i.e., β = 1) if 
no suitable line search parameter satisfying Equations (6.2-2) and 
(6.2-3) is found within a reasonable number of line search 
iterations, or if the unbalanced energy falls below a certain user-
pecifieds

• Line search is off by default. It is useful for problems involving 
plasticity, as well as large displacement problems involving beam
and shells. It is also helpful in many contact problems. In the case 
of contact problems, it is sometimes better to set LSUPPER to 1.0 
so that the line search only scales down displacements. 

• The effect of line search is more prominent when the curr
displacements are far from the conv
ha pens in the first few iterations of a time step, or when a major 
change occurs in the model, due for example, to contact 
initiation/separation, or the onset of plasticity. 

• Note that line search increases the computational time for each 
iteration. Most of the extra time goes towards the evaluation of 
t+∆tF(i) in Equation (6.2-2)
m
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 t i t t i t t i i t t t t i

6.2.3  Low speed dynamics feature 
 
• A low speed dynamics option is available for static analysis 
(can only be used with ATS or TLA/TLA-S features). It is 
activated with ATSLOWS in the NXSTRAT entry. Low speed 
dynamics is a special technique developed to overcome 
convergence difficulties in collapse, post-collapse and certain 
contact problems. 

In essence, this feature includes dynamics effects in an 
otherwise static problem. Solution 601 solves 

 
tα ( ) ( ) ( 1) ( ) ( 1)+∆ +∆ +∆ − +∆ +∆ −+ + ∆ = −C U K U R F  (6.2.4) 

 
s the mass matrix and α is a mass scaling factor that can 

vary from 0.0 to 1.0 (default 1.0), to partially account for the 
dynamic inertia effect . The C matrix is evaluated using 
 

 

M U

where M i

β=C K  
 

e βwher is a user-specified parameter (default 1
atrix (corresponding to zero initial 

isplacements). For more details on this dynamics equation refer to 
 are set via the ATSMASS and 

 
 When low speed dynamics is used with A
ill influence the results. It is recommended that the time step size 

eld 
constant for a period of time of at least 10 β  so that the dynamic 
effects die out. 
 

 no
arameter in Eq. (6.2-4) to 

nsities to zero. That way, 
 structural damping effects will be present in the otherwise 

static analysis. 
 
 
 

 

0-4), and K  is the 
(initial) total stiffness m
d
Section 6.4. The α and β parameters
ATSDAMP parameters in the NXSTRAT entry. 

• TS, the time step size 
w
be at least 105β . Or, it is recommended that the loads be h

4

• Note that mass effects may t be needed in the low speed 
dynamic analysis. In this case, set the α p
ero, or, alternatively, set the material dez

only
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6.2.4  Auto

• 
step size in order to obtain a converged solution. It is activated with 
AUTO=1 in the NXSTRAT entry. If there in no convergence with 
the user-specified time step, the program automatically subdivides 
the ime 
ste
 
• 
fac en there 
is no convergence. Successive subdivisions can be performed, if 
necessary, provided that the time step size is not smaller than a 
minimum value. This minimum value is set as the original step size 
divided by a scaling factor provided by the user (ATSSUBD in 
NXSTRAT). 
 
• 
the of the 
tim  functions. 
 
• The solution output is only furnished at the user-specified times, 
except when the solution is abandoned due to too many time step 
subdivisions without convergence. In this case, the solution output 
is a
 
• here are three options for controlling the time step size once 

n 
in NXSTRAT). 

 

without contact. 

 

matic-Time-Stepping (ATS) method 
 

The automatic-time-stepping (ATS) method controls the time 

 time step until it reaches convergence. In some cases, the t
p size may be increased to accelerate the solution. 

Parameter ATSDFAC in the NXSTRAT entry sets the division 
tor that Solution 601 uses to subdivide the time step wh

Note that the loads at any intermediate time instant created by 
 ATS method are recalculated based on the current value 
e

lso given for the last converged time instant. 

T
convergence is reached after ATS subdivisions. Either of these 
options can be selected, or Solution 601 can make the selectio
automatically (ATSNEXT 

1. Use the time increment that gave convergence  
In this case, the program continues the analysis using the last 
converged time step. Once the end of the user-specified time 
step is reached, the program may increase the time step based 
on the iteration history. This option is the default in analyses 

 

2. Return to original time step size 
In this case, the program continues the analysis using the 
original user-provided time increment. This option is the default
when contact is present. 
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In this case, the program sets the time step size such that the 
final time is that initially provided by the user. Hence, the 
analysis always proceeds through all user-specified time steps. 

static analysis without 
low-speed dynamics. The increase in time step cannot be larger 

r-specified factor (via ATSMXDT in NXSTRAT). Due to 
this increase, the analysis may be completed in fewer time steps 
than requested. This time step increase is only possible when the 
ATS subdivision is set to “Return to original step size”. 
 
  

m 
s 

 (assuming a time step 
step 

 above is selected: 
 

In option 1, the next sub-step will use a time step size of 
5. Two other sub-steps will be performed within load step 15 

 1.0. 
t = 16.25. 

 

5. If 

• Note that while options 1 and 2 may result in outputted solution 
times that are different from those initially specified by the user, 
there are certain time values that are not skipped. These are the 

”. In this case, the time 
ime at the end of the 

block is satisfied. The program determines these time step blocks 
based on the time step pattern input by the user. The final solution 
time is always assumed to be an end of a time step block. 
 
 

3. Proceed through user-defined time points 

 
• The ATS method can also increase the time step beyond the 
user-specified value if the iteration history shows that such an 
increase is useful. This is only possible in a 

than a use

• Following is an example to illustrate the basic options of ATS
subdivisions. Assume we are in load step 15 of a particular proble
with initial time t = 15.0 and a time step of 1.0. The solution doe
not converge and the time step is set to 0.5
division factor of 2.0). If that too does not converge, the time 
is set to 0.25. If that converges, the results are not yet saved. 
Another sub-step is performed for load step 15. The size of this 
step depends on which of the three options

f 

0.2
both of size 0.25 (assuming they all converge). 

 

f In option 2, the next sub-step will use a time step size of
If this converges load step 16 starts with 

f In option 3, the sub-step will use a time step size of 0.7
this converges load step 16 starts with t = 16.0. 

 

time values at the end of “time step blocks
step size is reduced such that the solution t
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• Option 2 is useful for contact because of the highly nonlinear 
nse (sudden changes in stiffness) that occurs when a nodes 

es into contact, or is released from contact, or even moves from 
one contact segment to another. A small step size may sometimes 
be needed only in the vicinity of this contact incident. Once contact 

 established/released the problem is “less nonlinear” and the 
riginal time step size can be used. 

 
6.2.5  Total Load Application (TLA) method and Stabilized TLA (TLA-S) 
method 

 
 The Total Load Application method is useful for nonlinear static 

analysis problems where all applied loads do not require the user to 
explicitly specify the time step sequence. It is activated with 
AUTO=3 in the NXSTRAT entry. In this case, the user applies the 

ll load value and Solution 601 automatically applies the load 

 met  features 
a s: 

ay 

- Maximum number of equilibrium iterations is 30. May be 
modified by TLAMXIT in NXSTRAT

- Line search is used. 
- Limiting incremental displacements per iteration is set to 

ber of time step subdivisions is set to 

 
• The Stabilized TLA method (TL
TLA method with the addition of various stabilizing features to 
reate a more stable system and aid convergence. The TLA-S 

 

 

respo
com

is
o

•

fu
through a ramp time function, and increases or reduces the time 
step size depending on how well the solution converges. This 
method cannot be used in dynamic analysis. 
 The TLA hod automatically activates the following
th t are suitable for this type of uniform loading static problem

- The first time step has a size of 1/50 of the total time. M
be modified by TLANSTP in NXSTRAT. 

. 

5% of the largest model dimension. May be modified by 
TLAMXDF in NXSTRAT. 

- The maximum num
64. 

- The time step cannot be increased more than 16 times its 
initial size. 

A-S) is identical to the regular 

c
method is activated with AUTO=4 in the NXSTRAT entry. The 
sources of stabilization are low speed dynamics which adds inertia
and stiffness proportional damping (see Section 6.2.3), contact 
damping (see Section 4.6.5), and stiffness stabilization (see Section
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r 

ion effects are excessive. 

 be reasonably accurate. However, even when the 
indicators are large, the TLA-S method provides a useful 

ution that can frequently be used to detect 
modeling errors such as incorrect contact definition, applied load, 

r boundary conditions. 
 
• The following features cannot be used with the TLA and TLA-S 

ethods: 
- All materials with creep effects 
- All materials with viscosity effects  
- Rigid target contact 

 
6.2.6  Load-Displacement-Control (LDC) m

 The load-displacement-control (LDC) method (arc length 
sed to solve for the nonlinear equilibrium path of 

onse of 
ethod is 

lly applied loads is adjusted 
automatically by the program.  
 The LDC method can only be used in nonlinear static analysis 
in which there are no temperature or creep effects. The LDC 

rmulations used in the LDC method used in Solution 601 
are described in ref. KJB Section 8.4.3 and the following reference: 

 
ref. Bathe, K.J. and Dvorkin, E.N., "On the Automatic 

Solution of Nonlinear Finite Element Equations," J. 
Computers and Structures, Vol. 17, No. 5-6, pp. 871-
879, 1983. 

10.6). The amount of stiffness stabilization, low speed dynamics 
inertia and damping, and contact damping can be adjusted by the
parameters TLASTBF, TLALSMF, TLAMSDF and TLACTDF in
the NXSTRAT entry. Indicators are provided in the output file afte
each converged solution to show if the forces due to the various 
stabilizat
 
• The TLA-S method can serve several purposes. If the 
stabilization indicators are all within reasonable bounds, typically 
less than 1% of the internal force indicator, then the TLA-S 
solution may

approximate sol

o

m

ethod 
 

•
method) can be u
a model until its collapse. If desired, the post-collapse resp

e model can also be calculated. The main feature of the mth
that the level of the externa

method can be used in contact problems. 
 
• The fo
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thod is activated via the AUTO flag in the 
nt on a user-specified 

egree of freedom is used to evaluate the initial load vector, and 
analysis continues until a specified displacement is reached at a 
certain node, or a critical point on the equilibrium path is reached. 

ariants of the LDC method are commonly referred to as arc-

s are 

 

• The LDC me
NXSTRAT entry. An enforced displaceme
d

V
length methods. 
 
• The equations employed in the equilibrium iteration
 

( )

( )

( 1) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( )

( ) ( ), 0

t t i i t t i i t t i

t t i t t i i

i if

λ λ

λ

+∆ − +∆ − +∆ −

+∆ +∆ −

∆ = + ∆ −

= + ∆

∆ ∆ =

K U R F

U U U

U

 (6.2-5) 

 

 
where 

( 1)t t i+∆ −K   = tangent stiffness matrix at time t+∆t, end of 
iteration (i-1) 

= constant reference load vector R  
( 1)t t iλ+∆ −  = load scaling factor (used on R) at the end of 

iteration (i-1) at time t+∆t 
( )iλ∆  = increment in the load scaling factor in iteration

(i) 
 

The quantities 
 

( 1)t t i+∆ −F  and  are as defined for Eq. (6.2-1). 
Note that in Eq. (6.2-5), the equation f = 0 is used to constrain 

the length of the load step. The constant spherical arc length 

oad vector R is evaluated from all the 

 
• To start the LDC method, the load multiplier for the first step ∆tλ 
(used to obtain the corresponding load vector ∆  R) is calculated 
using a user-specified enforced displacement (LDCDISP) acting on 
a given degree of freedom (LDCDOF) on a specific node 
(LDCGRID). All parameters are in the NXSTRAT entry. The 

( )i∆U

constraint method is usually used and the constant increment of 
external work method is used if the arc length method has 
difficulties to converge. 

The reference l
mechanical loads. 

tλ
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direction of the displacement is given by its sign. 
As shown in Fig. 6.2-1, the input for the initial enforced 

displacement (in particular whether it is positive or negative) is 
critical in establishing successive equilibrium positions using the 
LDC method. 

hown in Fig. 6.2-1 if initial 
isplacements of different signs are enforced for the first solution 

 

As an example, two entirely different solution paths will be 
obtained for the same model s
d
step. 

 

 

t$R

t�

0� specified positive

0� specified negative

0�
R

X

Y

Reference load = R, actual load at ti

a) Model considered

b) Equilibrium paths

me t = Rt$
Enforced displacement for first step = , displacement at time t =0 t� �

C
 

 

Figure 6.2-1: Example of the dependence of solution path on the
displacement enforced in the first step for the LD
method
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the 

r is λ R. 
to 

 loads R using a user predefined time 
nction when the LDC method is not used (see Chapter 5). In the 

 
: 

 
 

• After the first step, the program automatically traces 
nonlinear response by scaling the external load vector R 
proportionally, subject to the constraint of Eq. (6.2-5), so that at 
any discrete time t in iteration (i), the external load vecto t (i)

The scaling of the reference load vector using tλ is analogous 
the scaling of the applied
fu
case of the LDC method, the scaling function is determined 
internally by the program instead of being user-specified. 

• The converged displacement must satisfy the following relation

2 2
100U U  

where t t t+∆

tα ∆≤

 
= −U U U  is the incremental displacement vector for 

 is a displacement convergence input factor 
STRAT), and is the 

displacement vector obtained in the first step. If the above 
e 

 
C solution terminates normally when any one of the 

llowing conditions is satisfied: 
 

mum specified displacement is reached 
(LDCDMAX in NXSTRAT). 

 
 is 

divisions (LDCSUBD in 
NXSTRAT) has been attempted using different strategies but 
each time the solution has failed to converge within the number 
of allowed iterations. 

 
 

the current step, α
 t∆ U(LDCIMAX parameter in NX

inequality is not satisfied, an internal restart of the iteration for th
current step is performed by the program. 

• The LD
fo

f The maxi

 
f A critical point on the equilibrium path has been passed. If
LDCCONT=1 in NXSTRAT is specified, this condition
skipped. 
 
f The number of converged solution steps is reached. 
 
f The maximum number of sub
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6.2.7  Convergence criteria for equilibrium iterations 
 

can be specified in Solution 
ONVCRI in NXSTRAT):  

 

 

f energy and translation/rotation, 
 

f force/moment only, and  

ranslation/rotation only. 

rce 
n to the above 

 
re 

t 

 

 
• If the LDC method is not used, the convergence in equilibrium 
iterations is reached when the following inequalities are satisfied: 

Energy convergence criterion  
For all degrees of freedom: 

• The following convergence criteria 
601 (via C

f energy only,  
 

f energy and force/moment,  

 

f t
 

ned in an analysis, the contact fo• If contact is defi
convergence criterion is always used in additio
criteria (see Chapter 4). 

• The values of all convergence norms, whether used or not, a
provided in the .f06 file. For more details on the .f06 output forma
see Section 6.2.9. 

LDC method not used 

 

 

 
( ) ( 1)

(1)
ETOL

Ti t t i

T t t t

∆ −

+∆

⎡ ⎤t t+∆ +∆ −⎣ ⎦ ≤
⎡ ⎤∆ −⎣ ⎦

) 

 
where ETOL is a user-specified energy convergence
 
Force and moment convergence criteria 

U R F

U R F
 (6.2-6

 tolerance. 

For the translational degrees of freedom: 
 

( 1)

2 RTOL
RNORM

t t t t i+∆ +∆ −−
≤

R F
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For the rotational degrees of freedom: 

( 1)t t t t i+∆ +∆ −−R F
2 RTOL

RMNORM
≤  

 
where RTOL is a user-specified force convergence tolerance, 
RNORM and RMNORM are user-specified reference force and 
moment norms. If left undefined th
determines RNORM and RMNORM during execution. 
 
Translation/rotation convergence criteria  
For the translational degrees of freedom: 
 

 

e program automatically 

( )

2 DTOL
DNORM

i∆
≤

U
 

 

 

For the rotational degrees of freedom: 
 

( )

2 DTOL
DMNORM

i∆
≤

U
 

 
where DTOL is a user-specified force convergence tolerance, 

 

 
Note that in each of these convergence criteria the residual norm 

 measured against a user-specified maximum residual value; for 
example, the force criterion could be interpreted as  

 
(norm of out-of-balance loads) ≤ RTOL × RNORM 

 
imum 

iteria are used in each 
subdivision of time or load step when the ATS method of 
automatic step incrementation is use

DNORM and DMNORM are user-specified reference 
displacement and rotation norms. If left undefined the program
automatically determines DNORM and DMNORM during 
execution. 

is

where RTOL × RNORM is equal to the user-specified max
allowed out-of-balance load. 

Note also that these convergence cr

d. 
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• If contact is present in the analysis the following additional 

 

 

criterion is always used in measuring convergence 

( )
( )

( 1) ( 2) ( ) ( 1)

2 2

( 2)

2

max i i i i− − −,
RCTOL

max ,RCONSM

c c

i
c

−

− −
≤

R R λ λ

R
 

 
where ( 1)i

c
−R iteration  is the contact force vector at the end of 

( )1i − , ( )iλ  is the Lagrange multiplier vector at the end of itera

( )i , RCONSM is a reference contact force level used to prevent 
possible division by zero and RCTOL is a user-specified contact 
force convergence tolerance. 

tion 

 
Non-convergence: Convergence might not occur when the 
maximum number of iterations is reached or when the solution is 

• If the specified convergence criteria are not satisfied within the 
he 

ccording to the guidelines in Section 
6.2.8. 
 

Use a smaller time step. 

tions. 
 

rances. In most cases, looser 
tolerances help. However, in some problems, tighter tolerances 
help by not allowing approximate so
potentially prevent convergence in future time steps. 

 n ng 

diverging. The maximum number of iterations is set by MAXITE 
in the NXSTRAT entry.  
 

allowed number of iterations, but the solution is not diverging, t
following can be attempted: 
 
f Check the model a

f 

 
f Increase the number of allowable itera

f Change the ATS parameters. 
 
f Change convergence tole

lutions that could 

 
f Change line search. Some problems, such as those i volvi
plasticity, perform better with line search. 
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f Change contact settings. The optimal contact settings and 

olution terminates the iteration process before 
the maximum number of iterations is reached. It is sometimes 
detected when the energy convergence ratio
unacceptably large, or when the excessive d
distorted elements and negative Jacobians. In this case, the 

f ove rigid 

 to 

 
 Convergence in the equilibrium iterations is reached when the 

following inequalities are satisfied: 

Energy convergence criterion: For all degrees of freedom 
 

 

features depend on the model. See Chapter 4 for more details. 
 
• Divergence of s

 in Eq. (6.2-6) becomes 
isplacements lead to 

following can be attempted: 
 
f Check the model according to the guidelines in Section 
6.2.8. 
 

f Use a smaller time step. 
 

Make sure there are sufficient constraints to rem
body modes from all components in the model. Presence of 
rigid body modes usually results in a large ratio of maximum
minimum pivot during factorization (with sparse solver). 
 

LDC method used 

•

 

( ) ( 1) ( 1)

(1) (1)
ETOL

Ti t t i t t i

T

λ

λ

+∆ +∆ −⎡ ⎤∆ −⎣ ⎦
−

≤
⎡ ⎤∆ ∆⎣ ⎦

 

 
Force and moment convergence criteria: For the translational 

 

 

U R F

U R
 

where ETOL is a user-specified energy convergence tolerance. 

degrees of freedom 

( 1) ( 1)

2 RTOL≤  
RNORM

t t i t t iλ+∆ − +∆ −−R F
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For the rotational degrees of freedom 
 

 
( 1) ( 1)t t i t t iλ+∆ − +∆ −−R F

2 RTOL
RMNORM

≤  

 
where RTOL is a user-specified force convergence tolerance, 

RM and force and 

nes R
 

 method

t been reached from an 
stablished equilibrium configuration after the maximum restart 

attempts, the program saves the required restart information and 
rogram execution is terminated. 

 The solution can be continued by performing a restart run. Note 
that in this case the LDC method must be used in the restart run. A 

ifferent value for the initial displacement can be enforced at a 
 

 
6.2.8  Selection of incremental solution method 

 

l

ry nonlinear analysis should be preced

 
ess, the quality of the finite 

element mesh, etc. 
 

• If the use of a sufficient number of load steps and equilibrium 
iterations with tight convergence tolerances at each load step is 

RNO  RMNORM are user-specified reference 
moment norms. If left undefined the program automatically 
determi NORM and RMNORM during execution. 

The translation/rotation convergence criteria, and the contact 
convergence criterion, are the same as when the LDC  is not 
used, see above. 

 
Non-convergence: If convergence has no
e

p

d
different nodal point in the first step of the restart run. The enforced
initial displacement then corresponds to a displacement increment 
from the last converged equilibrium position, that is, at the time of 
solution start for the restart analysis. 

• This section gives recommendations on which incremental 
o ution method to use for a given analysis.  s

 
• Eve ed by a linear 
analysis, if only to check that the model has been set up correctly. 
The linear analysis results will highlight many important factors 
such as the proper application of boundary conditions, deletion of
all degrees of freedom without stiffn
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considered to yield an accurate solution of the model, then the basic 
o obtain a response prediction close to th  accurate one at 
l a solution cost as possible. 

 
• It is helpful to know if the model softens or hardens under 
increasing load. Structures can soften due to the spread of 
plasticity, and they can soften or harden due to geometric nonlinear 
effects. Contact usually leads to hardening. Fig. 6.2-2 shows some 
examples. 
 
 ster than 

 in    Fig. 
 to the beam will 

n

lso 

 
• When the ATS method is used, together with a reasonable time 
step size, the ATS method will result in almost the same "iteration 
path" as when not using the method. Namely, no step subdividing 
will be performed if convergence is always directly reached at the 
user-specified load levels. 
 Hence, in general, it is most convenient to use a reasonable 
number of load steps together with the ATS method. 
 

e problem involves localized buckling, or sudden changes 
contact, or other discontinuities onsider using the low 

 
• The LDC method is useful if collapse of the structure occurs 

uring the (static) solution. It can also capture the post-collapse 
s

are automatically calculated by the 
rogram. 

aim is t is
as smal

• Displacement controlled loading generally converges fa
force controlled loading. For example, in the model shown

.2-2(b), applying an increasing tip displacement6
co verge faster than an applied load P, and both will follow the 
same load displacement curve. For the model in Fig. 6.2-2(c) force 
control would fail past the local maximum on the load-
displacement curve. Displacement controlled loading (apply an 
increasing ∆) would work in this case. Note that this case is a
suitable for the LDC method. 

• If th
due to , c
speed dynamic feature. Make sure that the selected structural 
damping is not excessive. 

d
re ponse. Note, however, that the solution at a specific load or 
displacement level cannot be obtained using the LDC method 
because the load increments 
p



Chapter 6: Static and dynamic analysis 
 

 
 
316 Advanced Nonlinear Solution ⎯ Theory and Modeling Guide 

�
�

p

p

(a) Softening problem. Materially-nonlinear-only analysis,

elasto-plastic analysis of a cylinder

�

P

�

P

(b) Stiffening problem. Large displacement nonlinear elastic

analysis of a cantilever

�

P
P

�

(c) Softening/stiffening problem. Large displacement analysis of a

thin arch

analyses  
 

• Note that usually it is quite adequate to employ the energy 
convergence tolerance only. The need to use one of the other 
convergence criteria arises when the energy convergence is not 
tight (small) enough. In addition, there exist special loading 
conditions under which the denominator of the inequality (6.2-6) in 

Figure 6.2-2: Different types of nonlinear
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lt to 

 
6.2.9  Exam

 
This section presents a worked example that illustrates the 

nonlinear iteration and convergence concepts previously discussed. 
Figure 6.2-3 shows the iteration history for a load step. The 
standard Newton method with line searches is used with the energy 

RNORM=10.0, RMNORM =10.0). For contact RCTOL=1×10  
rence contact force RCONSM=0.01. For line search 

STOL=0.01. 
 

Row ITE=0: This row shows the result of the initial iteration 
called iteration 0. For this iteration, the program performs the 
following steps: 

 

Compute 
 

Compute  and  using 
 

Compute the out-of-balance force vector . Only 
considering translational degrees of freedom  of the 
out-of-balance force vector is 

Section 6.2.7 becomes small and hence the inequality is difficu
satisfy. 

ple 

and force convergence criterion (ETOL=1×10-6, RTOL=0.01, 
-3

and the refe

(0)t t t+∆ =U U . 
(0)t t+∆ F (0)t t+∆ K (0)t t+∆ U . 

(0)t t t t+∆ +∆−R F
, the norm
(0)

2

t t t t+∆ +∆− =R F 2.32×106 and 

. 

out-of-balance force vector is 

the largest magnitude in the out-of-balance force vector is 
6-2.32×10  at the Z translational degree of freedom of node 740

Only considering rotational degrees of freedom, the norm of the 
(0)

2

t t t t+∆ +∆− =R F 3.27×10-3 

and the largest magnitude in the out-of-balance force vector is 
-6.22×10-4 at the Y rotational degree of freedom of node 319. 
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 Figure 6.2-3: Example of iteration history printout 
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 PERCENT OF TIME 
 

    6 EQUILIBRIUM ITERATIONS PERFORMED IN THIS TIME STEP TO REESTABLISH EQUILIBRIUM
 STIFFNESS REFORMED FOR EVERY ITERATION OF THIS STEP
 NUMBER OF SUBINCREMENTS IN THIS TIME STEP =    1  

 
Figure 6.2-3: (continued) 

 

nly 
eri lation  of the 

 
 I T E R A T I O N   T I M E   L O G

 SOLUTION TIME (SECONDS)   . . . . . . . . . . . . . . . . . . . =       5.13

 PERCENT OF TIME SPENT IN LINE SEARCHING . . . . . . . . . . . . . . =  54.00
 PERCENT OF TIME SPENT IN LOAD VECTOR/STIFFNESS MATRIX CALCULATION . =  39.57

SPENT IN SOLUTION OF EQUATIONS  . . . . . . . . . . =   6.43

 
 
 

 

Compute (0)∆U  using (0) (0) (0)t t t t t t+∆ +∆ +∆= −K ∆U R F . O
consid ng trans al degrees of freedom, the norm

(0)incremental displacement vector is 
2

=∆U 4.79×10  and 

the largest magnitude in the incremental displacement vec
–1.14×10

-3

tor is 

al 
-3 at the Z displacement of node 159. Only considering 

rotational degrees of freedom, the norm of the increment
(0)displacement vector is 

2
=∆U × -1

 

 
gy” 

 7.45 10  and the largest 

magnitude in the incremental displacement vector is 1.64×10-1

at the Y rotation of node 239. 

Compute the “out-of-balance ener

( )(0) (0)T t t t t+∆ +∆− =∆U R F  2.24×103. 

Compute the energy convergence criterion 

 
Compute the norm of the change in contact forces 
CFORCE=4.74×103, and the norm of the contact forces 
CFNORM=4.11×103. 
 

(0) (0)

(0)

T t t t t

T t t t

+∆ +∆

+∆

⎡ ⎤∆ −⎣ ⎦ =
⎡ ⎤∆ −⎣ ⎦

U R F

U R F
 1.00 
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Compute the force and moment convergence criteria 
(0)

2

RNORM

t t t t+∆ +∆−
=

R F
2.32×105 and  

(0)t t t t+∆ +∆−
2

RMNORM
=

R F
-43.27×10 . 

 
Compute the contact convergence criterion 

 
CFORCE

max(CFNORM,RCONSM)
= 1.15×100

 
The energy convergence criterion is greater than ETOL, the force 
convergence criterion is greater than RTOL and the contact 
convergence criterion is greater than RCTOL. Therefore, 
convergence is not satisfied. 
 Note that the displacement and rotation norms are also 
substituted into the displacement convergence criterion, which 
results in 
 

(0)

2

DNORM

∆
=

U
6.92×10-2 and 

 
(0)

2

DMNORM

∆
=

U
8.63×10-1. 

 
Since DNORM and DMNORM are not provided by the user, they 
are automatically estimated by the program. The above 
displacement convergence values however are not used in 
determining convergence. 

 
Row ITE=1: This row shows the results of the first equilibrium 
iteration. In this iteration, the program performs the following 
steps: 

 
Compute  and the line 

search ratio 

(1) (0) (0)t t t t+∆ +∆= + ∆U U U , (1)t t+∆ F
(0) (1)

(0) (0)

T t t t t

T t t t t

+∆ +∆

+∆ +∆

⎡ ⎤∆ −⎣ ⎦
⎡ ⎤∆ −⎣ ⎦

U R F

U R F
. This ratio turns out to 
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which is less than STOL, corresponding to .  

 

,  and compute 
 

 

out-of-balance force vector is 

be greater than STOL=0.01, so line search is performed for 3 
steps and ends up with a line search energy ratio of 5.95×10-8 

(1) 0.999β =
 

Compute (1) (0) (1) (0)t t t t β+∆ +∆= + ∆U U U .  

Compute (1)t t+∆ F  using t t+∆ U(1) (1)t t+∆ K . 

Note that the stiffness matrix is updated since the standard 
Newton method is used. 
 
Compute the out-of-balance force vector −R F . Only
considering translational degrees of freedom, the norm of the 

(1)t t t t+∆ +∆

(1)t t t t+∆ +∆

2
− =R F  1.96×10  

e 

4

and the largest magnitude in the out-of-balance force vector is 
4.14×103 at node 239 (X translation). Only considering 
rotational degrees of freedom, the norm of the out of balanc
force vector is (1)t t t t+∆ +∆

2
− =R F 9.93×10  and the largest 

t 

Compute  using . Only 
tran s of fre , the norm

incremental displacement vector is 

0

magnitude in the out-of-balance force vector is –2.37×100 a
node 39 (Y rotation). 

(1)∆U (1) (1) (1)t t t t t t+∆ +∆ +∆= −K ∆U R F
considering slational degree edom  of the 

(1)U
2

=∆ 6.16

the largest magnitude in the incremental displacement vector is 
1.  at node 239 (X translation). Only considering 

, the norm e incrementa
nt vecto

×10-4 and 

52×10-4

rotational degrees of freedom  of th l 
(1)

2
=∆Udisplaceme r is 2.03×10  and the

magnitude in the incremental displacement vector is 6.71×10  

Compute CFORCE=4.74×10 3 and CFNORM=5.26×10 3. 
 
Compute the “out-of-balance energy” 

-1  largest 
-2

at node 279 (Y rotation). 
 

( )(1) (1)T t t t t+∆ +∆− =∆U R F 3.95×100. 
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Compute the energy convergence criterion 
(1) (1)

(1)T t t t+∆

T t t t t+∆ +∆⎡ ⎤∆ −⎣ ⎦ =
⎡ ⎤∆ −

U R F
1.77×10-3. 

 
Compute the force and moment convergence criteria  

⎣ ⎦U R F

(1)

2

RNORM

t t t t+∆ +∆−
=

R F
 1.96×103 and  

(1)

2

RMNORM

t t t t+∆ +∆−
=

R F
9.93×10-1. 

 
ontact convergence criterion 

 

Compute the c
CFORCE

max(CFNORM,RCONSM)
= 9.01×10-1 

 
The energy convergence criterion is greater than  

TOL, the force convergence criterion is greater than RTOL, the 

ion. This row is interpreted exactly as is row 
earch factor in this case is 4.84×10-1 obtained in 5 

line search iterations. 

 
Row ITE=3:  

the convergence criteria is satisfied. 

Ro I
equ teration. In this case, the previous increment of 
displacement from the solver satisfies the line search energy 
tol  
 

E
moment convergence criterion is greater than RTOL, and the 
contact convergence criterion is greater than RCTOL. Therefore, 
convergence is not satisfied. 
 The displacement convergence criterion is also evaluated for 
informational purposes. 
 
Row ITE=2: This row shows the results from the second 
equilibrium iterat
ITE=1. The line s

 Again, none of the convergence criteria is satisfied. However, 
they are all getting smaller. 

 This row shows the results from the third equilibrium
iteration. This row is interpreted exactly as is row ITE=2.  
 Again, none of 

 
w TE=4: This row shows the results from the fourth 
ilibrium i

(3)∆U
erance STOL so no line search is performed. 
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+∆ U
 
At the end of the that equilibrium

t (4) (3) (3)t t t+∆∆ = ∆ + ∆U U    

 iteration, the energy convergence 
criterion is  
 

(4) (4)

(4)

T t t t t

T t t t

+∆ +∆

+∆

⎡ ⎤∆ −⎣ ⎦ =
⎡ ⎤∆ −

ibrium 
ied 

o  

gence is reached. 

6.3  Linear dynamic analysis 

 
plicit integration using the Newmark method or the Bathe-

site method. 
 

• The notation given below is used in the following sections in 
e descriptions of the equilibrium equations: 

 

 C = constant damping matrix 

   
nt 

⎣ ⎦

U R F

U R F
1.11×10-9 which is less than ETOL. 

The force convergence value is 1.77×100 and the moment 
convergence value is 1.35×10-3. The contact convergence value is 
6.80×10-3. 
 Two of these four criteria (force and contact) are not satisfied, 
so convergence is not satisfied.  
 
Row ITE=5: The row shows the results for the fifth equil
iteration. Contact convergence criterion is now also satisf

aving only force convergence unsatisfied. The solution continues. le
 

w ITE=6: The row shows the results from the sixth equilibriumR
iteration. In this case, all convergence criteria are satisfied and 
conver

•
im
 Linear dynamic analysis in Solution 601 is performed by

compo

th

M = constant mass matrix 

 K = constant stiffness matrix 
,t t t+∆R R  = external load vector applied at time t, t+∆t 

 tF = nodal point force vector equivalent to the eleme
stresses at time t 

,t t t+∆U U  = vectors of nodal point accelerations at time t, t+∆t 
,t t t+∆U U  = vectors of nodal point displacements at time t, t+∆t 
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     ∆ U  = vectors of nodal point velocities at time t, t+∆t 
      

 U = vector of nodal point displacement increments from 
time t to time t+∆t, i.e., U = t+∆tU - tU. 

 
 The governing equilibrium equations at time t+∆t are given by 

 ) 

 The procedures used in the time integration of the governing 

 
n equations can use the 

Newmark method or the Bathe composite tim
The method can be selected using TIN
entry. The Newmark method is explained in ref. KJB., Section 

 
n Scheme” J. Computers and Structures, Vol. 

•  the Bathe composite method, the time increment ∆t  is 

d 

trix in the two 

 + 

• The following assumptions are used 

,t t+U t

•
 

t t t t t t t t+∆ +∆ +∆ +∆+ + =M U C U K U R  (6.3-1
 

equations for dynamic analysis are summarized in ref. KJB, 
Chapter 9. 

• The time integratio of the governing 
e integration method. 

TEG in the NXSTRAT 

9.2.4, and the Bathe composite method is explained in the 
following paper. 
 

ref.  K.J. Bathe, “Conserving Energy and Momentum in 
Nonlinear Dynamics: A Simple Implicit Time
Integratio
85, Issue 7-8, pp. 437-445. (2007) 

 
In

divided into two, the displacements, velocities, and accelerations 
are solved for at a time t + γ∆t, where γ ∈ (0,1) using the standar
Newmark method. The γ parameter is always set to 2 – √ 2 ≈  
0.5858 to keep the same effective stiffness ma
substeps and to avoid recalculating that matrix and refactorization. 
In the second substep a 3-point Euler backward method is used to 
solve for the displacements, velocities and accelerations at time t
∆t using the results at time t and t + γ∆t .  
 

in the Newmark method: 
 
 ( )1t t t t t t tδ δ+∆ +∆⎡ ⎤= + − + ∆⎣ ⎦U U U U  

 

(6.3-2) 
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Adva

 21
2

t t t t t t tt tα α+∆ +∆⎡ ⎤⎛ ⎞= + ∆ + − + ∆⎜ ⎟⎢ ⎥⎝ ⎠
-3) 

are the N wmark time integration parameters. 
This transforms Eq. (6.3-1) to 

) 

where 
 

6.3-5) 

⎣ ⎦
U U U U U  (6.3

 
where α and δ  e
 
 
 ˆ ˆt t t t+∆ +∆=K U R  (6.3-4
 

 0 1
ˆ a a= + +K K M C  (

 

( ) ( )0 2 3 1 4 5
t t t t t t t ta a a a+∆= + + + + +R M U U U C U U

  (6.3
 
and where a

ˆ a a+R U  

-6) 

ollowed for the Bathe composite 
time integration scheme. 

• The trapezoidal rule (also called the constant-average-

 The trapezoidal rule has the following characteristics: 
 

f It is an implicit integration method, meaning that equilibrium 
of the system is considered at time t+∆t to obtain the solution at 
time t+∆t. 
 
f It is unconditionally stable. Hence, the time step size ∆t is 
selected based on accuracy considerations only, see ref. KJB, 
Section 9.4.4.  

ref. KJB
Sections 9.2.4

and 9.4.4

0, a1, ... , a5 are integration constants for the Newmark 
method (see Ref. KJB, Section 9.2.4). 
 A similar procedure can be f

 

acceleration method of Newmark) obtained by using δ = 0.5,         
α = 0.25 is recommended for linear dynamic analysis (when the 

ewmark method is used). N
 
•

nced Nonlinear Solution ⎯ Theory and Modeling Guide 325 

 
• The Newmark method is in general stable when the following 
constraints are satisfied:

 

20.5, 0.25( 0.5)δ α δ≥ ≥ + . 
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different from the trapezoidal rule can be 
nd DELTA in the NXSTRAT entry. 

alues can add some numerical damping for high 
 is useful for some models. 

 
y more effective for structural 

vibration problems. In these analyses, the use of higher-order 

 

• Newmark parameters 
specified using ALPHA a
Other Newmark v
frequencies which

• The Newmark method is usuall

elements, just as in static analysis, and the use of a consistent mass 
discretization can be effective. 

• The time step increment (∆t) recommended for dynamic 
analysis with the Newmark method is given by 0.20co tω ∆ ≤  
where coω  is the highest frequency of interest in the dynamic 

ss and damping matrices are diagonal or banded 
tion), the solution always requires 

 
6.3.1  Mas

 
ure may be based on a lumped or 

 is calculated 

e

response. 
 
• Whether the ma
(lumped or consistent discretiza
that a coefficient matrix be assembled and factorized. 

s matrix 

 The mass matrix of the struct•
consistent mass calculation. The type of mass matrix to use is 
selected with MASSTYP in the NXSTRAT entry. 
 
• The consistent mass matrix for each element (iM

sing 
)

u
 

( ) ( ) ( ) ( )i i i T i dVρ= ∫M H H  
 

wher  ( )iρ  is the density, and  is the displacement 
polation matrix specific to the element type. 

 

( )iH
inter
 
• The construction of the lumped mass matrix depends on the 
type of element used. Each of the elements in Chapter 2 detail how
its lumped mass matrix is calculated. For elements with 
translational degrees of freedom only, the total mass of the element 
is divided equally among its nodes. 
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6.3.2  Dam n
 

g results from the selected 
me integration parameters, plasticity and friction. 

pi g 

• Damping can be added directly to the model through Rayleigh 
damping. Additional indirect dampin
ti
 
• If Rayleigh damping is specified, the contributions of the 
following matrix ( )RayleighC  are added to the total system damping 

matrix C described in Section 6.3: 
 
 Rayleigh α β= +C M  K
 

 
m stiffness matrix. α and β are 

e

e 
 

 be written as 

 

where M is the total system mass matrix which can be lumped or
consistent, and K is the total syste
sp cified through the entry PARAM, ALPHA1, ALPHA2. 
 
• See Ref. KJB, Section 9.3.3, for information about selecting th
Rayleigh damping constants α, β. In the modal basis, the damping
ratio can
 

2 2
i

i
βωαξ = +  

iω
 
where iξ  is the damping ratio fo iωr mode . It is clear that α tends 
to damp lower modes and β tends to damp higher modes. 

If α is not used, then a value of pT
β =

π
 will overdamp all 

motions with periods smaller than . Hence motions with periods 

sm

p

aller than pT  can be suppressed by choosing 

T

pT
β =

π
. This may 

be of interest when using damping to suppress numerical 
oscillations. 

not change significantly during the analysis, however.

ref. KJB
Section 9.3.

The above comments apply only when the stiffness matrix does 

3
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6.4  Nonlinear dynamic analysis 

• onlinear dynamic analysis in Solution 601 is performed by 
dir he 
com
ana
 
• ping 

N
ect implicit integration using the Newmark method or the Bat

posite time integration method, similar to linear dynamic 
lysis. 

he use of Rayleigh dam ( )T Rayleigh

ribed in Section 6.3.2. In this case, the total mass m

C  is the same as 

des atrix and 
the eigh 
dam
 
• rmed 
on olution 601, before the step-by-step solution of the 

c
 initial total stiffness matrix are used to evaluate the Rayl
ping matrix. 

Since RayleighC  is constant throughout the solution, it is fo
 once in Sly

 
 
 

 

ref. KJB
Section 9.5
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ueq ilibrium equations. 
 
• The governing equations at time t t+ ∆ are 

( ) ( ) ( ) ( 1)t t i t t i t t i t t t t i+∆ +∆ +∆ +∆ +∆ −+ + ∆ = −M U C U K U R F  
 

where  are the approximations 
to 
ite

t+∆t (i-1)

 

 

t and t + γ∆t. 

( ) ( ) ( 1) ( ), ,t t i t t i t t i i+∆ +∆ +∆ − + ∆U U U U
the accelerations, velocities, and displacements obtained in 
ration (i) respectively. 
The vector of nodal point forces F  is equivalent to the 

element stresses in the configuration corresponding to the 
displacements t+∆tU(i-1). 

• The trapezoidal rule obtained by using δ = 0.5 and α = 0.25 is 
recommended if the Newmark method is used.  
 
• In the Bathe composite method the time increment ∆t is divided
into two substeps. In the first substep, the displacements, velocities, 
accelerations are solved for at a time t + γ∆t, where γ = 0.5, using 
the standard Newmark method. In the second substep, a 3-point
Euler backward method is used to solve for the displacements, 
velocities, accelerations at time t + ∆t, using the results at both time 
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 For large deformation problems, the Newmark method can 
posite scheme remains 
size, the scheme is about 

to 

 

 

become unstable, while the Bathe com
stable. However, for a given time step 
twice as expensive computationally as the Newmark method due 
the extra solution step at time t + γ∆t. 
 
• The dynamic equilibrium equations are solved using the same 
iterative procedures used in static analysis, including the ATS 
method and line search, see Sections 6.2.1 and 6.2.2 for more 
details. However, the LDC method cannot be used in dynamics. 
 
• The energy and force/moment convergence criteria used in 
nonlinear dynamic analysis are: 

Energy convergence criterion  
For all degrees of freedom: 

( ) ( 1) ( 1) ( 1)

(1)
ETOL

Ti t t t t i t t i t t i

T t t

+∆ +∆ − +∆ − +∆ −

+∆

⎡ ⎤− − −
(0) (0)t t t t t+∆ +∆

∆ ⎣ ⎦ ≤
⎤− −

U

M U C U F
 

ional degrees of freedom: 

⎡∆ −⎣ ⎦

R M U C U F

U R
 
Force and moment convergence criteria  
For the translat
 

( 1) ( 1) ( 1)

2 RTOL
RNORM

t t t t i t t i t t i+∆ +∆ − +∆ − +∆ −− − −
≤

 

R M U C U F
 

 
For the rotational degrees of freedom: 

( 1) ( 1) ( 1)

2 RTOL
RMNORM

t t t t i t t i t t i+∆ +∆ − +∆ − +∆ −− − −
≤

 
s 

 In dynamic analysis the solution is sensitive to the time step 
ize. Using a large step leads to inaccurate time integration 

R M U C U F
 

The other convergence criteria and the notation and consideration
for the use of the convergence criteria are the same as in nonlinear 
static analysis; see Sections 6.2.7 and 6.2.8. 
 
•
s
regardless of the tightness of the convergence tolerances. 
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6.5  Solver

 solver (default), the iterative multi-grid solver and the 3D-
erative solver. The SOLVER parameter in the NXSTRAT entry is 

sing 

 
6.5.1  Dire

 
rect solution method in Solution 601 is a sparse matrix 

 the 
 

robust and should  

d 
 

t-of-core. It is 
o

l 

 
definite stiffness matrix (i.e. one with a 

olution, 

 
 

s 

Three solvers are available in Solution 601. These are the direct 
parses

it
used to select which solver to use. Details on parallel proces
can be found in Section 10.8. 
 The spare solver is the only choice for heat transfer analysis. 

ct sparse solver 

 The di•
solver. A hybrid ordering scheme of the nested dissection and
minimum degree algorithms is used to greatly reduce the amount of
storage required and the total number of operations performed in 
the solution of the equations. 

 
• The sparse matrix solver is very reliable and 
generally be used for most problems in Solution 601. It is the 
default solver. 

 
• The sparse solver memory is separate from that memory 
allocated by the rest of the program. It is also dynamically allocate
by the solver as needed. The total memory allocated by the Nastran
program for Solution 601 covers both the program’s memory and 
the solver’s memory. 

 
 The sparse solver can be used both in-core and ou•

m re efficient to run an out-of-core sparse solver using real 
(physical) memory than it is to run an in-core sparse solver using 
virtual memory. Therefore, for large problems, we recommend 
ncreasing the memory size (via the Nastran command) until it fits i

the problem in-core, or it reaches approximately 85% of the rea
memory. 

• When a non-positive 
zero or negative diagonal element) is encountered during s
the program may stop or continue, according to the following rules: 
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al 

ents 

 
n 601 continue execution 

 

 

 

tion 

 
• When Solution 601 stops, it prints informational messages for 
the zero or negative diagonal elem ts. 

s matrix can be non-positive definite due to 
a modeling error, for example if the model is not sufficiently 

e 

 
6.5.2  Itera

 
alysis of very large problems, the amount of storage 

quired by a direct solution solver may be too large for the 
vailable computer resources. For such problems, the use of the 

f If a diagonal element is exactly equal to 0.0, Solution 601 
stops unless 

-  The equation number corresponding to the zero diagon
element is only attached to inactive elements (elem
that are dead due to rupture or the element death feature). 

-  The user requested that Solutio
using the NPOSIT flag in the NXSTRAT entry. 

f If the value of a diagonal element is smaller than 10-12 but 
not equal to zero, or the value of a diagonal element is negative, 
Solution 601 stops unless one of the following options is used: 

-  Automatic load-displacement (LDC) 
 
-  Automatic time-stepping (ATS) 

-  Contact analysis 
 
-  The user requested that Solution 601 continue execu

using the NPOSIT flag in the NXSTRAT entry. 

en
 
• When Solution 601 continues execution and the diagonal 
element is smaller than 10-12, it assigns a very large number to the 
diagonal element, effectively attaching a very stiff spring to that 
degree of freedom. 
 
• Note that the stiffnes

restrained in static analysis. In this case the results obtained can b
misleading. 

tive multi-grid solver 

• In the an
re
a
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erative method of solution is necessary. 
 

• The multi-grid solver available in Solution 601 is an algebraic 
solver, and can be used with all solution options of Solution 601. 
 
• The multi-grid solver is sensitive to the conditioning of the 
coefficient matrix. It generally performs better (requires fewer 
solver iterations) for well-conditioned problems. Ill-conditioned 
problems may require a large number of iterations or may not 
converge at all. The maximum number of iterations is set by 
ITEMAX in the NXSTRAT entry. 
 
• The conditioning sensitivity of the multi-grid solver makes it 
more suited for bulky 3-D solid models compared to thin structural 
models where the membrane stiffness is much higher than the 
bending stiffness. It also makes it more efficient in dynamic 
analysis (compared to static), because of the stabilizing effect of 
the mass matrix (inertia effect) on the coefficient matrix. 
 
• Note that the multi-grid solver cannot recognize that the 
stiffness matrix is singular. For such problems, the solver will 
iterate without converging. 
 
• The multi-grid solver is sometimes also less efficient for 
problems with 
 

 

e number of rigid elements or constraint equations 
 

ion 

 

 the multi-grid solver are as follows: 
 

it

-  displacement coordinate systems that vary significantly
along the model 

 
  -  a larg

  -  a large number of rod or beam elements 
 
  -  some contact problems. 
 
 In such cases, the 3D-iterative solver might be used, see Sect
6.5.3. 

• The main practical differences between the use of the direct 
solver and
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f The direct solver executes a predetermined number of 
operations after which the solution is obtained. It is less 
sensitive to the conditioning of the coefficient matrix. 

f The multi-grid solver performs a predetermined number of 
on, but the number of iterations is not 
he number of iterations depends on the 

few hundred to a few 

 

D is the 

 

 

operations per iterati
known beforehand. T
condition number of the coefficient matrix. The higher the 
condition number, the more iterations are needed. The number 
of iterations required varies from a 
thousand. 

• Regarding the convergence of the multi-grid method, assume 
hat the system of equations to be solved is =Ax b , t

diagonal vector of  A , N is the dimension of x, ( )kx  is the 
approximate solution at solver iteration k, and the residual vector is

( ) ( )k k= −r b Ax . We can define: 
  

( )

( ) ( )

2
,k kRDA r D N=

( ) ( ) ( 1)

( ) (1) ( ) (1)in and/ , / ,

k k k

RDA RDA RDB RDB

−

The multi-grid method converges when one of the following 

2

( ) ( )

2

m

,

,k k

k k

x x

RDC x

RDR

= −

=

=

 

RDB

( ) ( )/ .k kRDX RDB RDC=
  

criteria is reached: 
 

( )

( )

EPSII and EPSB

EPSA EPSB and EPSB

, ,
, , ,

k

k

RDA RDX
RDA RDR RDX

≤ ≤

≤ ≤ ≤

( ) ( 1)

EPSA and EPSB

max EPSII *0.1

, ,
k k

RDR RDX

x x −

≤ ≤

− ≤

 

 
where EPSIA, EPSIB, and EPSII are convergence tolerances set 
ia the NXSTRAT entry. The defaults are 6EPSIA 10−= , v
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4EPSIB 10−= , 8EPSII 10−= . However, for nonlinear analysis 
with equilibrium iterations, looser tolerances can be used. 
 
terative solver 6.5.3  3D-i

efficiently solve 
large mo  higher order 3-D solid elements 

 In addition to the higher order 3-D solid elements, the models 
s, 

parse solver is usually more effective. 

 

perelastic materials may slow down 

orresponding to ν = 0.49, instead of the default 0.499  (see Eq. 

 control in the 3D-iterative solver is as follows: 
Considering the linearized equation , let 

 
• The 3D-iterative solver has been developed to 

dels containing mainly
(e.g., 10-node CTETRA, 20-node CHEXA, etc.). 
 
• The 3D-iterative solver is invoked if SOLVER=2 in the 
NXSTRAT entry. 
 
•
can contain other elements available in the program (e.g., shell
rods, beams, rebars, etc.), including contact conditions. 
 
• The 3D-iterative solver is effective in linear or nonlinear static 
analysis and in nonlinear dynamic analysis.  For linear dynamic 
analysis, the s
 
• The 3D-iterative solver, like all iterative solvers, performs a 
number of iterations until convergence is reached. The maximum
number of iterations is set by ITEMAX in the NXSTRAT entry. 
 
 Nearly incompressible hy•

the convergence of the 3D-iterative solver. For these material 
models, the bulk modulus κ should be restricted to a value 
c
3.7-7) 
 
• Convergence

Ax b= ix  be its 
 

s 
 one of the following criteria is satisfied 

 

approximate solution at inner-iteration i  and ( )i ir b Ax= −  be its

corresponding residual. The convergence in the iterative solver i
said obtained if any

1
0 0 0

i i ib or r or x xε ε ε−≤ ≤ − ≤  
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or 
0.001 3

3
ei

scale
e

r r
iσ

⎪⎪≤⎨⎪ ≥⎪⎩
 equation residual:  

iσ⎧ <

 

or 1 0.001 3
3

vi i
scale

v

i
x x x

i
σ

σ
−

⎧ <⎪⎪− ≤⎨⎪ ≥⎪⎩
 solution residual:  

 
1The solution norm is defined as 

1 in
nx x= ∑ . In the above, 

16
0 10ε −≡ , the equation scale scaler b= , and the variable scale  

 

 
( ){ }
( ){ }1 2 31

0 3max , ,

1 2 31
0 3ax ,

scale

x x x for linear problems
x

m

x x x x for nonlinear problemsε + + ∆

ε⎧⎪ + +⎪⎪⎪=⎨⎪⎪⎪⎪⎩

 

 
where  ( ),t t t i ix U U x U+∆∆ = − =∆  is the current solution 
increment in the Newton-Raphson iteration i, σ  = EPSIB of the e

XSTRAT entry, and σν  = min(10-6, σe⋅10-3).  

h e so al (VAR) are 

6.6  Track

ll 

 convergence information is also 
 to the .f06 file as illustrated in the example of Section 6.2.9. 

d 
d solution. The user can also 

N
 
T e equation residual (EQ) and th lution residu
written to the .f06 file. 

ing solution progress 

• Important model parameters such as the memory used by the 
model, memory used by the solver, number of degrees of freedom, 
solution times, warning messages, and error messages are a
provided in the .f06 file. 
 
• Detailed iteration by iteration
written
 
• The program outputs a more summarized time step information 
to the .log file. This outputs focuses on the time steps and the ATS 
history. 
 
• The program terminates when the final solution time is reache
or when it cannot reach a converge
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rminate the program during execution. This can be done 
gra ” wi  a 
lin leaning up 
ll 
ki

con
 
• ing 
exe
NXSTRAT param

T OL, RTOL, STOL, RCONSM, RNORM, RMNORM, 
n 

te
cefully by creating a runtime option file “tmpadvnlin.rto th
e “STOP=1”. This forces the program to stop after c
temporary and results files. This method is more useful than a

“ lling” the solution process if the results at the previously 
verged times steps are needed. 

Several NXSTRAT solution parameters can be modified dur
cution via the runtime option file “tmpadvnlin.rto”. The 

eters that can be modified are MAXITE, DTOL, 
OL, RCTE

DNORM, and DMNORM. Only one parameter can be specified i
each line of the .rto file. 
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7  Explicit d
This chapter presents the formulations and algorithms used to solve 

e in the NXSTRAT bulk data entry. The elements and 

ut 
6 file. A shorter summarized output is provided in the .log 

7.1  Formu

he central difference method (CDM) is used for time integration 
 case, it is 

assumed that 
 

. ynamic analysis 
 

explicit dynamic problems using Solution 701 including time step 
calculation. Most flags or constants that need to be input in this 
hapter arc

material  properties available for explicit analysis with Solution 
701 are listed in Table 2-3. 
 Information about the progress of the solution is always outp
o the .f0t

file. 

lation 

T
in explicit analysis (see ref. KJB, Section 9.2.1). In this

 

( )2

1 2t t t t t

t
−∆ +∆= − +

∆
U U U tU  (7.1-1) 

 
nd the velocity is calculated using 

  

 

a

( )1
2

t t t t

t
−∆ +∆= − +

∆
U U tU  (7.1-2) 

 
he governing equilibrium equation at time t is given by 

 

 

T

t t t t+ = −M U C U R F  (7.1-3) 
 

uting the relations for and  Eq. (7.1-1) and (7.1-2), 
respectively, into Eq. (7.1-3), we obtain 
Substit n t U t U i

 

2 2 2

1 2 1
2 2

t t t t t t

t t t t
+∆ −∆⎞ ⎛ ⎞+ = − + − +⎟ ⎜ ⎟∆ ∆ ∆ ∆⎠ ⎝ ⎠

M C U R F M U M C U  
1 1 t

t
⎛
⎜ ∆⎝

(7.1-4) 
 

from which we can solve for t t+∆ U . 
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s:  
 

um 
e 

 
f When the mass and damping matrices are diagonal, no 

of the central difference method is only effective when 
this condition is satisfied. Therefore, only lumped mass can be 

 
ass. This will lead 
ents according to 

 

 ∆t is governed by the following criterion  

 

• The central difference method has the following characteristic

f It is an explicit integration method, meaning that equilibri
of the finite element system is considered at time t to obtain th
solution at time t+∆t. 

coefficient matrix needs to be factorized, see ref. KJB, p. 772. 
The use 

used in Solution 701. Also damping can only be mass-
proportional. 

f No degree of freedom should have zero m
to a singularity in the calculation of displacem
Eq. 7.1-4, and will also result in a zero stable time step. 

f The central difference method is conditionally stable. The 
time step size
 

Nmin
CR

Tt t∆ ≤ ∆ =
π

 

 
where CRt∆  is the critical time step size, and TNmin is the 

ethod is most effective when low-order 
elements are employed. Hence quadratic 3-D solid and shell 
elements are not allowed. 

 

 

e steps 
and the frequency of output of results. The stable time step is used 
instead of the value in TSTEP (unless the value in TSTEP is 
smaller). 

ref. KJB
Sections 9.2.1,

9.4 and 9.5.1

smallest period in the finite element mesh. 
 

• The central difference m

 
• The time step in Solution 701 can be specified by the user, or 
alculated automatically (via the XSTEP parameter in NXSTRAT). c

When the user specifies the time, Solution 701 does not perform 
any stability checking. It is the user’s responsibility, in this case, to
ensure that an appropriate stable time step is used. 

• When automatic time step calculation is selected, the TSTEP 
entry is only used to determine the number of nominal tim
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 For example, if the following TSTEP entry is used 

 

 
7.1.1  Mas

 
n the 

type te 
section in Chapter 2. 

For elements with translational degrees of freedom only, the 
r 

 is element dependent. 

licit analysis are sometimes scaled up so that they do 
ot a

7.1.2  Dampin
 

• 
, 

: 
 
 

 
TSTEP, 1, 12, 1.0, 4 
 
there will be 12 nominal steps each of size 1.0. If the stable time 
step is smaller than 1.0 it will be used instead and results will be 
saved as soon as the solution time exceeds 4.0, 8.0 and exactly at
12.0 since it is the last step of the analysis. 

matrix s 

• The construction of the lumped mass matrix depends o
 of element used. Details are provided in the appropria

 
total mass of the element is divided equally among its nodes. Fo
elements with rotational masses (beam and shell elements), the 
lumping procedure
 Note that the lumping of rotational degrees of freedom is 
slightly different in implicit and explicit analysis. The rotational 

asses in expm
n ffect the element’s critical time step. 

 
 g

Damping can be added directly to the model through Rayleigh 
ping. Additional indirect damping results from plasticitydam

friction and rate dependent penalty contact. 
 
• Only mass-proportional Rayleigh damping is available in 
explicit analysis. Hence, the damping matrix C in Eq. 6.3-1 is set 
to

Rayleigh α=C M  
 

here M is the total lumped mass matrix. 
ormation about selecting 

e Rayleigh damping constant α. 

w
See Ref. KJB, Section 9.3.3, for inf

th
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7.2  Stability

• 
if  

 

 

The stable time step for a single degree of freedom with central 
ference time integration isd

 
2N

CR
Tt

Nπ ω
 

The stable time step for a finite element assembly is 
 

 

∆ = =  

min

max max

2 2N
CR

N E

Tt t
π ω ω

∆ ≤ ∆ = = ≤  

 
where maxNω  is the highest natural frequency of the system, which 
is bound by the highest natural frequency of all individual elements 
in a model maxEω  (see Ref. KJB, Example 9.13, p. 815). 
 
• When automatic time step is selected, the time step size is 
determined according to the following relationship 

 

 min
max

2
E

E

t K t K
ω

∆ = × ∆ = ×  (7.2-1) 

 
where K is a factor (set via the XDTFAC parameter in NXSTRAT) 
that scales the time step. 
 
• For most element types the critical time step can be expressed in 
terms of a characteristic length and a material wave speed 

 

 E
Lt
c

∆ =  (7.2-2) 

 
where the definition of the length L and the wave speed c depend 
on the element and material type. For all elastic-plastic materials 
the elastic wave is used. This condition is used in Solution 701 
instead of actually evaluating the natural frequency in Eq. (7.2-1). 

ref. KJB
Section 9.4.2
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he critical time step calculated for all elements is only 
or some elements and material combinations it is 

lls), and it will therefore need scaling using K factor in Eq 

ange in the material 

 2-node rod element is 

 

• Note that t
an estimate . F
exact, and for others it is slightly conservative. However,  it may 

ot be small enough for excessively distorted elements (3-D solid n
and she
(7.2-1). 
 
• The time step also changes with deformation, due to the change 
in the geometry of the elements and the change in the wave speed 
hrough the element (resulting from a cht

properties). 
 
Rod elements 

he critical time step for aT
 

E
Lt
c

∆ =  

 
where L is the length of the element, and c is the wave speed 

rough the element 

 

th
 

Ec
ρ

=  

 
Beam elements 
The critical time step for the (Hermitian) beam element is 
 

 2

12/ 1E
L It
c A

∆ = +  
L

 
where L is the length of the element, A is the element area, I is the 
largest moment of inertia, and c is the wave speed through the 
element 

 
Ec
ρ

=  
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Shell elements 
The critical time step for she
 

ll elements is 

 E
Lt
c

∆ =  

s a characteristic le  on its area 
d the length of its sides, and ed through 

ell, which for linear isotr

 

 
where L i ngth of the element based

c is the planar wave spean
the sh
 

opic elastic materials is 

2(1 )
Ec

ρ ν−
=

 
tep estimated mate, and may 

be too large for excessively 
 

 elements 
e step for the

 

 

The critical time s  here is only approxi
distorted shell elements. 

3-D solid
The critical tim  3-D solid elements is 
 

E
Lt
c

∆ =  

 
a characteristic leng sed on its 

volume and the area of its sides, and c is the wave speed through 
ent. For linear isotropi als c is given as 

 

where L is th of the element, ba

the elem c elastic materi

 
(

Ec (1 )ν
1 )(1 2 )ρ ν ν+ −

−
 =

 
e step estimated here is only approximate, and may 

r excessively 

Spring elements 
 critical time step for a sp

The critical tim
be too large fo distorted 3-D solid elements. 

 

The ring element is 
 

 1 2M M

1 2

2
( )K M M+

 
2

E
N

t
ω

∆ = =
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where M1 and M2 are the masses of the two spring nodes and K is 
. Massless springs a o account in the 

 the stable time st

lements 
These elements are perfectly e 

ty of explicit analysis. 

ap and Bushing elements
ents use the same criterion as spring element. 

agement 

e step size l 
simulation time. Since this ti n the 

hest eigenvalue of the sm or 
ely distorted element could considerably increase the 

ven if this element is not relevant to the full model. 
ent hav step size 

s provided in the ou

ilar critical time steps. If 
es are un

means that elements should app  have the same lengths 
2). 

of the crit takes 
time. Th
me step CAL in 

NXSTRAT determines how e step is 
valuated. 

• The time step size for explic  can be unduly small for a 
me. Three fe eal with this 

 
lobal mass scaling variable can be applied to all elements in 

model (the XMSCALE parameter in NXSTRAT). This scale 
or is applied to the densitie , except scalar 

 where it is applied dir ir mass. 

its stiffness re not taken int
calculation of ep. 

 
R-type e

 rigid and therefore do not affect th
stabili
 
G  
These elem

7.3  Time step man

• The stable tim has a major influence on the tota
me step is determined based o
allest element, a single small hig

excessiv
solution time, e
 Note that the elem ing the smallest critical time 
is alway tput file. 
 
• Ideally, all elements should have sim
the material properti iform throughout the model this 

roximately
(see Eq. 7.2-
 
• The evaluation ical time step for each element 
some computational 
performed at every ti

erefore, it does not need to be 
. The parameter XDT
frequently the critical tim

ree
 

it analysis
realistic solution ti
problem. 

atures are provided to d

• A g
the 
fact s of all elements
elements ectly to the
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• Mass scaling can also be applied to elements whose 
automatically calculated init alue 
(XDTMIN1 parameter in NX is then 
applied to these elements to 
XDTMIN1. The mass scaling ratio is then held constant for the 

sis. 

• Elements with automatica  a 
fied value (XDTMIN2  be 

completely removed from the m ul for 
mall or distorted ele est of 

the model. 
 

arameters explained above (XMSCALE, XDTMIN1 
and XDTMIN2) should all be used with great care to ensure that 
the accuracy of the analysis i d. 

7.4  Tracking solution progress 

rtant model paramet  by the 
umber of degrees of nimum 

ble time step, warning and ded in the 
 file. 

The program outputs a m ation 
to the .log file. 

gram terminates wh d 
 when it cannot reach a conv so 

he program during e
efully by creating a runtim ith a 

line “STOP=1”. This forces the pr ning up 
emporary and results files. This method is m e useful than 
ling” the solution process if the results at the previously 
verged times steps are ne

ial time step is below a certain v
r STRAT). A mass scale facto

make their time steps reach 

duration of the analy
 

lly calculated time step smal
par T) can

ler than
speci ameter in NXSTRA

odel. This parameter is usef
e rextremely s ments that do not affect th

• The three p

s not significantly compromise

• Impo ers such as the memory used
times, mimodel, n  freedom, solution 

sta  error messages are all provi
.f06
 
• ore summarized time step inform

 
• The pro en the final solution time is reache
or erged solution. The user can al
terminate t xecution. This can be done 
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 drop in temperature 
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θ⎛ ⎞ ⎛∂ ∂ ∂
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y z
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re is the rate of heat 

⎜∂ ∂⎝ ∂ ∂⎠ ⎝

whe  Bq  generated per unit volume. 
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Note that any region of the re no boundary 
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perature conditions:   The temperature is prescribed on the 
y S1 in e

ns:  The heat flow input is prescribed on the 
dary denoted by S2 in e

Convection boundary conditions:  The heat flow input is 
specified on the boundary denoted by S2 in (8.1-3) according to the 
following convection condition 

 
 

Tem
boundary denoted b quation (8.1-2). 

 
t flow conditioHea

boun quation (8.1-3). 
 

( )S S
eq h θ θ= −  (8.2-1) 

 
with h being the convection coefficient (possibly temperature 
dependent), eθ  the ambient (external) temperature, and Sθ  the 
body surface temperature. 

 
Radiation boundary conditions:  The heat flow input is specified 
on the boundary denoted by S2 in (8.1-3) according to the following 
radiation condition 

 

 ( )( )44S S
rq f eσ θ θ= −  (8.2-2) 

 
where σ  is the Stefan-Boltzmann constant, f is a view factor or 

e is the material emissivityshape factor, , rθ  is the temperature of 
the radiative source (or sink) and Sθ  is the unknown body surface 
temperature. Both temperatures are in the absolute scale. Note that 
in the above equation the absorptivity is assumed to be equal to the 
emissivity. 
 
Internal heat generation:  Internal heat is generated inside the 
body. This is introduced as the  term in equation (8.1-1). 
 
Initial conditions:  For a transient analysis the temperature 
distribution at the start of the analysis must be specified. 
 

Bq
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8.3  Steady state analysis 

! For a steady-state problem there is no heat capacity effect, i.e., 
the time derivative term θ  does not appear in the governing 
equation system. See Section 7.2 of ref. KJB for more details. 
 
! Time becomes a dummy variable which is used to indicate 
different load levels in an incremental load analysis (just as in static 
structural analysis). 
 
! In linear thermal analysis, the finite element system of equations 
to be solved is 
 
  K̂θ = Q  (8.3-1)  
 
where K̂ is the effective conductance matrix and Q is the nodal 
heat flow vector from all thermal load sources. 
 
! In nonlinear thermal analysis, the finite element system of 
equations to be solved at iteration i of time step t + ∆t is 
 
  ( ) ( ) ( )1 1ˆ i i it t t t t t

I
− −+∆ +∆ +∆∆ = −K θ Q Q  (8.3-2) 

 
where ( 1)ˆt t i+ −K is the effective conductance matrix with 
contributions from thermal conduction, boundary convection and 
radiation, t t+∆ Q  is the nodal heat flow vector with contributions 
from all thermal load sources such as convection, radiation, 
boundary heat flux and internal heat generation and ( 1)t t i

I
+∆ −Q  is the 

internal heat flow vector corresponding to the element 
temperatures.  
 The temperatures are then updated as 
 
  ( ) ( ) ( )1i i it t t t −+∆ +∆= + ∆θ θ θ  (8.3-3) 
 
These two equations correspond to the full Newton method without 
line search. 
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! In the full Newton method, the effective conductance matrix is 
updated every iteration, and in the modified Newton method, the 
conductance matrix is only updated every time step. The selection 
of the full or modified Newton method is controlled by the 
ITSCHEM parameter in the TMCPARA entry, with full Newton as 
the default. 
 
! If line search is used, Equation (8.3-3) is replaced by 
 
  ( ) ( ) ( ) ( )1i i i it t t t β−+∆ +∆= + ∆θ θ θ  (8.3-4) 
 
where a line search scaling factor is obtained from a line search in 
the direction of ( )i∆θ  in order to reduce out-of-balance residuals 
according to the following criterion 
 

  
( ) ( )

( ) ( )1
TOL

Ti it t t t
I

Ti it t t t
I

+∆ +∆

−+∆ +∆

⎡ ⎤∆ −⎣ ⎦ ≤
⎡ ⎤∆ −⎣ ⎦

θ Q Q

θ Q Q
 

 
where TOL is a hard-coded tolerance equal to 5 x 10 P

-3
P, and the 

magnitude of β is bounded as follows 
 

0.001< β < 8.0 
 

 Line search is off by default, and it is activated via the 
LSEARCH parameter in the TMCPARA entry.  
 
! The size of the time step increment should be carefully selected 
in nonlinear heat transfer analysis. If a time step is too large the 
equilibrium iterations may not converge; on the other hand, too 
small a time step may result in many more increments being 
required to reach the desired load level than are necessary. 

8.4  Transient analysis 

! For a transient analysis, the effect of heat capacity is included in 
the governing equation system; thus the time derivative, θ , term 
appears in the equations. 
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! In linear transient thermal analysis, the finite element system of 
equations to be solved is  
 
  ˆ+Cθ Kθ = Q  
 
where C is the heat capacity matrix. 

 
! The heat matrix can be calculated as lumped or consistent (set 
via the HEATCAP flag in the TMCPARA entry). 
 
! In nonlinear transient thermal analysis, the finite element system 
of equations to be solved is 
 
  ( ) ( ) ( ) ( ) ( )1 1 1ˆi i i i it t t t t t t t

I
− − −+∆ +∆ +∆ +∆+ ∆ = −C θ K θ Q Q  

 
! Both full or modified Newton methods can be used, and line 
search can also be used, as explained in the previous section. 
 
! The time integration of the governing equations can be 
performed using one of three available time integration schemes: 
the Euler backward method, the trapezoidal rule, or the Bathe 
composite time integration method. The time integration scheme is 
controlled by the TINTEG parameter of the TMCPARA entry. All 
three methods are implicit. Explicit analysis is not supported for 
heat transfer problems. 

8.5  Choice of time step and mesh size 

! The choice of time step size ∆t is important; if ∆t is too large 
then the equilibrium iteration process may not converge for 
nonlinear problems. For transient problems, the accuracy will also 
be sacrificed with an excessively large time step. On the other 
hand, too small a time step may result in extra effort unnecessarily 
being made to reach a given accuracy. 

Therefore it is useful to provide some guidelines as to the choice 
of time step size ∆t. We would like to use as large a time step as the 
accuracy/stability/convergence conditions allow. Thus the 
guidelines are phrased as upper limits on the time step size ∆t, i.e. 

 

ref. KJB
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 maxt t∆ ≤ ∆  
 

! Consider the governing differential equation for constant 
thermal conductivity and heat capacity in one dimension 
(extrapolation to higher dimension is possible) 

 

 
2

2c k
t x
θ θρ ∂ ∂

=
∂ ∂

 

 
Non-dimensionalizing this equation, we use 

 

 0ˆ ˆ ˆ; ;
w

t xt x
q L k L
θ θθ

τ
−

= = =  

 
where 0θ  is the initial temperature, τ a characteristic time, L a 
characteristic length, and q BwB a characteristic heat flux input. This 
yields the equation 

 

 
2

2 2

ˆ ˆ
ˆ ˆ

a
t L x
θ θ∂ ∂

=
∂ ∂

 

 

where 
ka

cρ
=  is the thermal diffusivity. We take the characteristic 

time to be 
 

 
2L

a
τ =  

 
giving the dimensionless time t̂  and the dimensionless Fourier 
number FB0 B 

 

 0 2

atF
L

=  
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This number gives the ratio of the rate of heat transferred by 
conduction to the rate of heat stored in the medium. 

To obtain a time step value, a related parameter is introduced 
 

 
( )

( )0 2

a t
F

x∆

∆
=

∆
 

 
where ∆x is a measure of the element size. Thus, given an element 
size ∆x and a value of 0F , a time step size can be determined. The 
recommended value of 0F

∆
 given below comes from stability and 

accuracy considerations. However, since all available time 
integration schemes are implicit, accuracy becomes the primary 
consideration. 

 
! Setting  

 
 0 1F

∆
≤  

 
or equivalently 

 
( )2x

t
a

∆
∆ ≤  

 
gives reasonably accurate solutions (again, overall solution 
accuracy depends on the "mesh size" ∆x). The minimum value of 

( )2x
a

∆
 over all the elements of the mesh should be employed. The 

"element size" ∆x is taken, for low or high-order elements, as the 
minimum distance between any two adjacent corner nodes of the 
element.  

 
! To provide guidelines for the choice of element size ∆x, we 
consider the case of a semi-infinite solid initially at a uniform 
temperature, whose surface is subjected to heating (or cooling) by 
applying a constant temperature or constant heat-flux boundary 
condition.  

We define a "penetration depth", γ, which represents the 
distance into the solid at which 99.9% of the temperature change 
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has occurred at a time t. For the above posed problem, which has 
an analytical solution, we have 

 
 4 atγ =  
 

where a is the thermal diffusivity. Thus the penetration zone of the 
domain must have a sufficient number of elements to model the 
spatial temperature variation, but beyond that zone larger elements 
can be used without loss of accuracy. 

Since the penetration zone increases with time, we define a time 
tBmin B which is the minimum >time of interest= of the problem. tBmin B may 
be the first time at which the temperature distribution over the 
domain is required, or the minimum time at which discrete 
temperature measurements are required. 

Given this time tBmin B we divide the penetration zone into a 
number of elements, e.g., for a one-dimensional model, such that 

 

 min
4x at
N

∆ ≤  

 
Usually N = 10 gives an effective resolution of the penetration zone 
for a variety of boundary conditions and time integration schemes 
i.e., 

 

 min
2
5

x at∆ ≤  

 
! Note that for a given (large) tBmin B, the element size upper bound 
may be greater than the physical dimensions of the problem. In this 
case it is obvious that the element size must be significantly 
reduced. 

 
! Although consideration was given to one-dimensional problems 
only, the generalization of ∆x to two- and three-dimensional 
problems has been shown to be valid. Hence the above element size 
can also be used for two- and three-dimensional problems.  
 
! In coupled TMC analysis the element size will frequently be 
governed by the structural model. The same will frequently also 
apply to the time step size (for iterative TMC coupling). 
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8.6  Automatic time stepping method 

• The heat transfer automatic-time-stepping (ATS) method can be 
used to vary the time step size in order to obtain a converged 
solution. It is set via the AUTO parameter in the TMCPARA entry. 
If there in no convergence with the user-specified time step, the 
program automatically subdivides the time step. 
 
• Further subdivision can be done until convergence is reached or 
the time step size becomes smaller than a minimum value. This 
minimum value is set as the original time step size divided by a 
scaling factor provided by the user (ATSSUBD in TMCPARA). 
 
• This automatic time stepping procedure is used in the solution 
of heat transfer analyses and one-way coupled TMC (thermo-
mechanically coupled) analyses. For iteratively coupled TMC 
analyses the structural ATS procedure of Section 6.2.4 is used 
instead. Note that the structural ATS procedure has many more 
features, and is better suited for nonlinear problems involving 
contact, geometric and material structural nonlinearities. 
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9. Coupled thermo-mechanical analysis (Solution 601 
only) 
 

! Advanced Nonlinear Solution can handle two forms of coupling 
between thermal (heat transfer) and structural analyses (COUP 
parameter in TMCPARA entry). 
 
! The first is one-way coupling, where the thermal solution 
affects the structural solution, but the structural solution does not 
affect the thermal solution. 
 
! The second is iterative coupling which is a two-way coupling 
where both the thermal and structural solutions are interdependent. 
 
! TMC coupling can involve any combination of static or implicit 
dynamic structural analysis, and steady state or transient heat 
transfer analysis. This feature is useful due to the potential for 
different physical time scales between the structural and heat 
transfer models.  
 The settings needed for each combination are listed below 
(TRANOPT parameter is in TMCPARA entry). 
 

Settings 
Structural Heat transfer 

SOL TRANOPT 

Static Steady 153 - 

Static Transient 159 1 

Dynamic Steady 159 2 

Dynamic Transient 159 0 (default) 
 
Table 9.1: Settings for structural and heat transfer combinations 
 
! Note that since the temperatures are interpolated in the same 
manner as the displacements, but the mechanical strains are 
obtained by differentiation of the displacements, it follows that the 
thermal strains (which are proportional to the temperatures) are in 
effect interpolated to a higher order than the mechanical strains. 
The consequence is that for coarse finite element idealizations, the 

ref. KJB
Section 7.3
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stress predictions show undesirable errors (e.g., nonzero stresses, 
when the stresses should be zero). These errors vanish as finer 
finite element idealizations are employed. 
 Fig. 9.1-1 summarizes the results of a simple analysis that 
illustrates these concepts.  
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Figure 9.1-1: Simple problem to schematically demonstrate solution
inaccuracies that can arise due to discretizations used in
heat flow and stress analyses  
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9.1  One-way coupling 

! In this case, the heat transfer and structural equations are solved 
separately, with the temperatures from the heat transfer passed back 
to the structural problem for calculation of thermal expansion and 
temperature-dependent material properties. 
 
! Currently, the time steps used in the structural and heat transfer 
equations are assumed to be the same, as set via the TSTEP entry. 
However, if ATS is present the time steps may differ during the 
solution. In this case, the heat transfer solution is always ahead of 
the structural one, and the structural solution uses temperature 
interpolated from the two closest heat transfer solutions. 

9.2  Iterative coupling 

! In iterative coupling, the thermal solution can affect the 
structural solution and the structural solution can affect the thermal 
solution. 
 
! The coupling from structural to thermal models includes the 
following effects: 

 
< Internal heat generation due to plastic deformations of the 
material 
 
< Heat transfer between contacting bodies 
 
< Surface heat generation due to friction on the contact 
surfaces. 
 

! At the beginning of each time step, the structural model is 
solved for the displacements using the current temperatures. Then 
the heat transfer model is solved for the temperatures using the 
current displacements. This cycle constitutes one TMC equilibrium 
iteration. TMC convergence is then assessed, and if it is not 
reached, then the structural and heat transfer models are solved 
again using the new current displacements and new current 
temperatures. This process is repeated until TMC convergence is 
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reached. Note that within each TMC equilibrium iteration, the heat 
transfer and structural models each have their own internal iteration 
procedure and convergence criteria. 
 
• The same TMC convergence parameter is used in the 
displacement and temperature convergence checks. 
 
• The temperature convergence is checked as follows: 
 

  
( ) ( 1)

2
( )

2

TOLL
t t i t t i

t t i

+∆ +∆ −

+∆

−
<

θ θ

θ
 

 
• The displacement convergence is checked as follows: 
 

  
( ) ( 1)

2
( )

2

TOLL
t t i t t i

t t i

+∆ +∆ −

+∆

−
<

U U

U
 

 
where i denotes the TMC iteration. TOLL is set using the 
TMCTOL parameter in the TMCPARA entry. 
 
! In strongly coupled problems, a temperature relaxation factor 
can be used to help reach convergence. This is set via the TRELAX 
parameter in the TMCPARA entry and defaults to 1.0, which 
corresponds to no relaxation. The temperatures used in the 
structural analysis in the case of temperature relaxation at a TMC 
iteration k are based on the temperatures in the last heat transfer 
TMC iteration k-1 as well as the prior heat transfer TMC iteration 
k-2.  
 

( )( ) ( 2) ( 1)1k k k
structure heat heatθ λ θ λθ− −= − +  

 

where λ is the temperature relaxation factor. 
 
! Note that decreasing the relaxation factor usually reduces the 
chances of an oscillating solution, but if decreased too much will 
also slow down convergence. 
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Internal heat generation rate due to plastic deformations of the 
material:   The internal heat generation rate per unit volume due to 
plastic deformations Mq  is computed as 

 

 : p
Mq ω= Dτ  (9.1) 

 

where τ  is the Cauchy stress tensor and pD  is the plastic velocity 
strain tensor. The overbar denotes Acorresponding to the 
intermediate configuration@. ω   is a parameter, 0 1ω≤ ≤ , to 
account for the fraction of plastic work that gets converted to 
internal heat. It is set via the HGENPL parameter in the 
TMCPARA entry. 

This feature is only available for 2-D solid, 3-D solid and shell 
elements. 

 
Internal heat generation rate due to inelastic deformations of 
rubber-like materials:  When there are viscoelastic or Mullins 
effects included in rubber-like materials, these effects can cause 
heat generation, see Sections 3.7.7 and 3.7.8. 

 
Heat transfer between contacting bodies:  Contact heat transfer 
is governed by an equation similar to that used for convection 
boundary conditions: the heat flux entering contacting body I is  
 

 ( )ˆIJ J I
cq h θ θ= −  (9.2) 

where ĥ  is the contact heat transfer coefficient (set via the 
TMCHHAT parameter in the BCTPARA entry) and Iθ  and Jθ  
are the surface temperatures of the contacting bodies.  
 In the limit as ĥ  approaches infinity, the temperatures of the 
contacting bodies become equal to each other. With ĥ  large, 
equation (9.2) can be considered a penalty method approximation 
to the equation I Jθ θ= . 
 
Surface heat generation rate due to friction:  The frictional 
contact heat generation rate at a contactor node G is computed as 
 

 IJ
Gq = ⋅τ U  (9.3) 
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where τ  is the frictional contact force and U  is the relative 
velocity between the contacting bodies at the point of contact. 

The heat rate going to the contactor body is IJ
c Gf q  and the heat 

rate going to the target body is IJ
t Gf q , where cf  and tf  are the 

fractions of generated heat reaching the contactor and target 
surfaces, respectively. These user input parameters are set via the 
TMCFC and TMCFT parameters in the BCTPARA entry. The 
following relations must hold:  

 
 0 1, 0 1, 0 1c t c tf f f f≤ ≤ ≤ ≤ ≤ + ≤  
 

The contactor heat rate is applied to the contactor node. The target 
heat rate is distributed among the target segment nodes.  
 
 
 
 
 



Chapter 10: Additional capabilities 
 

 
 
362 Advanced Nonlinear Solution ⎯ Theory and Modeling Guide 

10. Additional capabilities 

10.1  Initial conditions 

10.1.1  Initial displacements and velocities 
 

• Initial displacements and velocities at nodes can be specified 
using the TIC entry together with the IC case control command.  
 
• Any initial displacements or velocities specified in a restart run 
are ignored, except when restarting from a static to a dynamic 
analysis; in this case, initial velocities are taken into account. 
 
! Initial rotations should only be applied in small displacement 
analysis. 

 

10.1.2  Initial temperatures 
 

• Initial temperatures, for both structural and heat transfer 
analyses, are specified via the TEMPERATURE (INITIAL) case 
control command. The actual temperature values are specified via 
the TEMPD and TEMP entries. 
 
• For transient heat transfer analysis (SOL 601,159) the initial 
temperatures can also be specified using the IC case control 
command. In this case, it takes precedence over the 
TEMPERATURE (INITIAL) command. 
 
• The thermal strains are always assumed to be zero initially, see 
Section 3.1.6.  

10.2  Restart 

• Restart is a useful feature in Advanced Nonlinear Solution. It 
can be used when the user wishes to continue an analysis beyond 
its previous end point, or change the analysis type, loads or 
boundary conditions or tolerances. A restart analysis is selected by 
setting MODEX = 1 in the NXSTRAT entry. Recovering results 
from a restart file without continuing the analysis can also be done 
setting MODEX = 2. 
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• All relevant solution data needed for a restart run are saved in a 
file (with extension .res) in case they are needed in a restart 
analysis. The frequency of data writing to a restart file is set via the 
IRINT flag in the NXSTRAT entry. 
 
• Note that multiple restart data can be appended to the restart 
file. This enables the restart analysis to be based on a solution step 
different from the last converged solution. Saving multiple time 
step solutions to a restart file can be expensive, however, as it leads 
to a large restart file size. The restart time is set via the TSTART 
parameter in the NXSTRAT entry. 
 
• If no restart time is provided in the restart run (achieved by 
setting the restart time to 0.0), the program uses the data for the 
latest restart time on the .res file. 
 
• Note that once the second analysis starts, it will overwrite the 
.res file with new data. Therefore, if the user wishes to redo the 
second run, then the .res file must be copied again from the first 
model.  
 
• The geometry, and most element data, cannot be changed in a 
restart analysis. However, the following changes are allowed: 
 
f Type of analysis can change. Static to dynamic and dynamic 
to static restarts are allowed. 
 
f Solution type can be changed. Solution 601 (static or 
dynamic) to Solution 701 restarts are allowed and vice-versa. In 
this case, features not available in either solution type cannot be 
used.  

 
f Solution control variables can change. The flags, constants 
and tolerances for the iteration method, convergence, time 
integrations, automatic time stepping  and load-displacement-
control can be changed.  
 
f Externally applied loads and enforced displacements can be 
changed. 
 
f The material constants can be changed. However, note that 
in a restart run the same material model (with the same number 
of stress-strain points and the same number of temperature 
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points, if applicable) must be used for each element as in the 
preceding run. 
 
f Boundary conditions can be changed. 
 
f Constraint equations and rigid elements can be changed. 
 
f Contact settings can be changed. This includes most contact 
set, contact pair and contact surface parameters. See section 
4.6.4 for restrictions.  
 
f Rayleigh damping coefficients can be changed. 
 
f Time increment and number of solution steps can be 
modified. 
 
f Time functions describing the load variations can be 
changed. 
 

• Note that some default settings are different between Solution 
601 and Solution 701. Some of these have to be manually set by the 
user to enable restarts. The most common such settings are:  

 
f Incompatible modes default on in Solution 601 and off in 
Solution 701 

 
f Default large strain formulation (ULH in Solution 601 and 
ULJ in Solution 701)  
 

• When restarting from static to dynamic analysis (both implicit 
and explicit dynamics), the initial velocities and accelerations are 
assumed to be zero. However, if an initial velocity is prescribed in 
the restart run, it will be used instead. When restarting from one 
dynamic analysis to another, initial velocities and accelerations are 
transferred from the first to the second run. 
 
• A results recovery mode is available by setting MODEX =2 in 
the NXSTRAT entry. In this case, the program reads the restart file 
and recovers the results at the final restart time available in the 
restart file. Results at a specific time can also be recovered by 
setting the TSTART parameter in NXSTRAT to the desired time. 
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10.3  Element birth and death feature 

• The element birth and death option is available for modeling 
processes during which material is added to and/or removed from 
the structure (set via the EBDSET case control and bulk data 
commands). Such processes, for example, are encountered in the 
construction of a structure (structural members are added in 
succession), the repair of a structure (structural components are 
removed and new ones are added)  or during the excavation of 
geological materials (a tunnel is excavated). If the element birth 
and death option is used, the corresponding elements become 
automatically nonlinear. Fig. 10.3-1 illustrates two analyses that 
require the element birth and death options. 

 
• The main features of element birth and death are as follows: 

 
f If the element birth option is used, the element is added to 
the total system of finite elements at the time of birth and all 
times thereafter. 
 
f If the element death option is used, the element is taken out 
of the total system of finite elements at times larger than the 
time of death. 
 
f If both element birth and death options are used, the element 
is added to the total system of finite elements at the time of birth 
and remains active until the time of death. The time of death 
must be greater than the time of birth. The element is taken out 
of the total system of finite elements at all times larger than the 
time of death. 

 
• Once an element is born, the element mass matrix, stiffness 
matrix and force vector are added to the mass matrix, stiffness 
matrix and force vector of the total element assemblage (until the 
death time, if any). Similarly, once an element dies, the element 
mass matrix, stiffness matrix and force vector are removed from 
the total assembled mass matrix, stiffness matrix and force vectors 
for all solution times larger that the time of death of the element. 
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Figure 10.3-1: Analyses that require the element birth and death

options
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• Note that an element is born stress free. Hence, even if the nodal 
points to which the new element is connected have already 
displaced at the time of birth, these displacements do not cause any 
stresses in the element, and the stress-free configuration is defined 
to occur at the nearest solution time less than or equal to the birth 
time. 
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• Note also that the damping matrix is not modified when 
elements die or when they are born. Therefore, Rayleigh damping 
should not be used. For example, if a pipe break is simulated by 
setting the death time for certain elements in an implicit dynamic 
analysis, then, if Rayleigh damping is used, the pipe might not 
separate. 
 
• When the element birth/death option is used, the tangent 
stiffness matrix may at some solution times contain zero rows and 
corresponding columns. The equation solver disregards any zero 
diagonal element in the tangent stiffness matrix if no elements are 
attached to the associated degrees of freedom.  

 
• Advanced Nonlinear Solution enables the user to set an element 
death decay time parameter (DTDELAY in NXSTRAT) which 
causes the gradual reduction of the element stiffness matrix to zero 
over a finite time rather than instantly. The reduction starts at the 
death time and progresses linearly with time until the decay time 
has passed. The element therefore totally vanishes at a time equal 
to the sum of the death time and the death decay time. This option 
is useful for mitigating the discontinuity that the structure may 
experience due to the death of some of its elements. 
 
• The element birth/death option applies to any mass effect i.e., 
gravity loading, centrifugal loading and inertia forces. The mass 
matrix, therefore, does not remain constant throughout the solution. 
 
• The time at which an element becomes active or inactive is 
specified by the parameters TBIRTH and TDEATH respectively 
(in the EBDSET entry). 
 
• If an element is required to be born at time tBb B, i.e., the 
configuration of the element at time tBb B corresponds to the stress-free 

configuration, enter TBIRTH = tBb B + ε where 
1000

tε ∆
=  and ∆t is 

the time step between time tBb B and the next solution time. If an 
element is required to be inactive at and after time tBd B, enter 

TDEATH = tBd B - ε, where 
1000

tε ∆
=  and ∆t is the time step between 

the previous solution time and time tBd B . 
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Birth option active: Fig. 10.3-2(a) shows the activity of an 
element for which the birth option is active. Note that if TBIRTH is 
input for the range shown (where TBIRTH > tBb B and TBIRTH is ≤ tBb B 
+ ∆t), then the stress-free configuration of the element is at time tBb B, 
and the element is first active at time tBb B + ∆t. Note that the stress in 
the element is based on the displacements measured from the 
configuration at time tBb B, irrespective of the input value of TBIRTH, 
provided that TBIRTH is input in the range shown in Fig. 
10.3-2(a). See also the example given below. 
 
Death option active: Fig. 10.3-2(b) shows the activity of an 
element for which the death option is active. Note that if TDEATH 
is input for the range shown (where TDEATH ≥ tBd B - ∆t and 
TDEATH < tBd B), then the element is first inactive at time tBd B. 
 

 

0
Time

t

Stress free
state

t+ t�
First solution time for which
the element is active

(a) Birth option active

TBIRTH in this range causes the element
to be included in the stiffness matrix and
the force vector at time t+ t�

0
Time

tt- t�
First solution time for which
the element is inactive

(b) Death option active

TDEATH in this range causes the element to be
included in the stiffness matrix and the

force vector at time t
not

Figure 10.3-2: Use of element birth and death option  
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Birth then death option active: This is a direct combination of the 
birth and death options. Initially some elements are inactive. At a 
particular solution time determined by the time of birth TBIRTH, 
the elements become active and remain so until a subsequent 
solution time determined by the time of death TDEATH, where 
TDEATH > TBIRTH. 
 
Example of the element birth option: Consider the materially 
linear rod element model shown in Fig. 10.3-3(a) in which the time 
of birth for element 2 is slightly larger than t. At time t, the length 
P

t
PL corresponding to the load P

t
PF is determined as shown in Fig. 10.3-

3(b). Note that  P

t
PL corresponds to the length at which element 2 is 

stress-free. 
 
 
 
 

Element 1

Element 1

(always active)

Element 2

tL

L

F(t)

u(t)

Linear 2-node

rods

(b) Solution at time t

(TBIRTH = t + t/1000)�

tF

K =AE/ L

F =K ( L- L)
1

1

0

t int t 0

1

(a) Model schematic

Figure 10.3-3: Example of the use of the element birth option 
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At the time of birth, element 2 with length P

t
PL is added to the 

system which was already in equilibrium, see Fig. 10.3-3(c). Note 
that the internal force in element 2 is exactly zero after its addition 
to the system. 

At time t + ∆t, element 2 is now active. The force in element 2 
is determined based on its deformation with respect to the stress-
free state, see Fig. 10.3-3(d). Hence, the total increment in 
displacement from time t to time t + ∆t determines the force in the 
rod. Identically, the same solution would be obtained using any 
value for TBIRTH which satisfies the relation TBIRTH > t and 
TBIRTH ≤ t + ∆t. 

 
• The birth/death feature is available for contact pairs in contact 
analysis. 
 

Element 2

tL

F = 0
in t

Element 1

Element 2

t+ t� L

t+ t� F

(d) Solution at time t + t�

(c) Stress-free configuration for element 2

2

K =AE/ L

F =K ( L- L)
1

1

0

t+ t int t+ t 0� �

1

K =AE/ L

F =K ( L- L)
2

2

t

t+ t int t+ t t� �

2

Figure 10.3-3: (continued)  
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10.4  Reactions calculation 

• Output of the reaction forces and moments is governed by the 
SPCFORCES case control command. 

 
• Note that loads applied to fixed degrees of freedom do not 
contribute to the displacement and stress solutions. However, these 
loads are accounted for in the reaction calculations.  
 
• Reaction forces and moments at a node are computed using the 
consistent force vectors (calculated from the element internal 
stresses) of elements attached to the node. Hence, a check on the 
balance of the support reactions and the applied loads often 
provides a good measure on the accuracy of the solution (in terms 
of satisfying equilibrium in a nonlinear analysis). 
 
• Reaction calculations in dynamic analysis with consistent mass 
matrix take into account the mass coupling to the deleted degrees 
of freedom. The reactions exactly equilibrate the applied forces in 
all cases. 
 
• Reaction calculations in dynamic analysis do not include 
contributions from the daming matrix. 

10.5  Element death due to rupture 

• For the materials and elements that support rupture, element 
death is automatically activated when rupture is detected at any  
integration point of the element. The element is then considered 
"dead" for the remainder of the analysis, and, in essence, removed 
from the model (mass, stiffness, and load contributions). 
 
• When elements die, contactor segments connected to these 
elements are also removed from the model. 
 
• Dead elements may be gradually removed from the model in 
order to avoid sudden changes in stiffness and acceleration. This 
feature is activated by setting a non-zero DTDELAY time in the 
NXSTRAT entry. 
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10.6  Stiffness stabilization (Solution 601 only) 

• Stiffness stabilization is used to prevent the equation solver 
from encountering zero pivots that would stop the solution of 
equations. In dynamic analysis, these zero pivots are not present 
due to the mass matrix. However in static analysis, zero pivots may 
arise, for example in the following cases: 
 
Unsupported body: If the forces acting on the body are not in 
equilibrium, one or more rigid body motions of the body are 
activated and no solution can be expected. Even if the forces acting 
on the body are in equilibrium, so that no rigid body motion is in 
fact activated, zero pivots are present corresponding to the rigid 
body modes. 
 
Contact analysis, in which one or more of the individual parts of 
the model (not considering contact) contain rigid body motions. 
When the parts are not in contact, then there is nothing to prevent 
the rigid body motions. 
 
Mesh glueing, when one or more of the individual parts of the 
model (not considering glueing) contain rigid body motions. 
 
General constraints, when one or more of the individual parts of 
the model (not considering the general constraints) contain rigid 
body motions. 

 
• Parts of the model with rigid body motions can alternatively be 
treated by adding weak springs at various locations in the model. 
The advantages of using stiffness stabilization, instead of using 
weak springs, are: 

 
f Determining the number, location and stiffness of the springs 
requires a lot of user intervention.  
 
f There may be no suitable locations for the springs. 
 
f The stiffness of each spring has to be entered as an absolute 
value (with dimensions of force/length) while the stiffness 
stabilization factor is dimensionless (see below). 
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f The springs generate internal forces which affect the final 
solution while stiffness stabilization does not affect the internal 
forces. It is sometimes hard to assess how much the springs 
affect the final solution. 

 
• Stiffness stabilization modifies the diagonal stiffness terms 
(except for those belonging to contact equations) as follows: 

 
(1 )ii STAB iiε= +K K  

 
where STABε  is a dimensionless stabilization factor. The right-hand 
side load vector is not modified. 
 
• There are three stiffness stabilization options available, which 
are selected using the MSTAB and MSFAC parameters in the 
NXSTRAT entry: 
 
 MSTAB=0 (no stabilization) 
 MSTAB=1 (stabilization, with STABε = MSFAC) 
 MSTAB=2 (stabilization is activated if needed) 
 
The defaults are MSTAB=0, MSFAC=1E-10. 
 
• When MSTAB=2, the use of stabilization is determined based 
on the ratio of the factorized maximum and minimum diagonals of 
the stiffness matrix. This determination is made for every 
equilibrium iteration in nonlinear analysis. When stabilization is 
used, stabilization is applied to all degrees of freedom using the 
value STABε  (as if MSTAB=1).  
  
• In linear analysis, stabilization should be used with caution, 
since the right-hand-side load vector is not modified. The solution 
can therefore be affected by stiffness stabilization.  
 It is recommended to try the analysis first without stabilization. 
If the equation solver encounters zero pivots, then try one of the 
following methods: 
 
f Use stabilization with the smallest possible value of STABε  
for which the equation solver gives a solution, or  
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f Use stabilization, and change the analysis to a nonlinear 
analysis, for example specify element birth-death in one of the 
elements; or specify a nonlinear material, with material 
constants chosen so that the material response is linear (for 
example, an elastic-plastic material with a very high yield 
stress).  

 
• In nonlinear analysis, since the right-hand-side load vector is 
not modified, the final converged solution is the same as without 
stabilization (assuming that the tolerances are tight enough). 
However, the rate of convergence can be worsened due to the 
stiffness stabilization, so that more equilibrium iterations are 
required.  
 
• Stiffness stabilization is only useful for the sparse and 3D-
iterative solvers. The iterative multigrid solver does not fully 
factorize the stiffness matrix and hence cannot properly trigger the 
automatic stabilization. 

10.7  Bolt feature (Solution 601 only)  

• Bolts in Solution 601 are modeled using beam elements with a 
user-specified initial bolt force or preload. The beam elements that 
make up a bolt are selected via the BOLT entry, and the bolt force 
is defined via the BOLTFOR entry. The bolt preload set must be 
selected via the BOLTLD case control command. 
 Fig 10.7-1 illustrates the bolt modeling feature. 
 
• An iterative solution step is required to obtain the desired bolt 
force in all bolts. This solution step is performed at the very 
beginning of an analysis prior to the rest of the step-by-step 
analysis. External forces are not included in the bolt force iteration 
step. 
 
• Bolt force iterations can be performed in one step (default) or in 
a number of “bolt steps” (set via the BOLTSTP parameter in 
NXSTRAT). This feature should be used if the bolt conditions are 
too severe to converge in one step. 
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Figure 10.7-1: Schematic illustrating the bolt modeling feature  
 
 

• The bolt feature can only be used in static and implicit dynamic 
analysis. 
 
• In the time steps following the bolt force steps, the force in the 
bolts can vary depending on the loads applied to the rest of the 
model. 
 
• Both small and large displacement formulations can be used for 
the bolt’s beam elements. Any cross-section available for the beam 
element can be used, but only the isotropic elastic material model 
can be used. 
 
• In the bolt force calculations we iterate as follows: 
 
  0 ( 1) ( ) ( 1) 0 ( 1)

I
i i i i− − −∆ = −K U R F  

and 
 

  0 ( ) 0 ( 1) ( )i i i−= + ∆U U U  
 
where ( 1)

I
i−R is the consistent nodal point force vector 

corresponding to the forces in the bolt elements. 
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• The bolt force convergence is checked for every bolt element m:  
 

  
0

0 TOLL
R R

R
m m

m

−
<  

 
where 0Rm  is the user-input bolt force for element m, Rm  is the 
current force in bolt element m, and TOLL=0.01 is an internal tight 
bolt tolerance. 
 
• Different modeling techniques with varying complexity can be 
used to model a bolt. Three such techniques are shown in Fig. 
10.7-2, in increasing level of complexity. In the third technique, 
solid elements are used throughout the bolt except at one section 
where a layer of solid elements is removed and replaced by the 
beam bolt element. This technique can accurately capture model 
contact interactions and also bolt rupture since any material model 
can be applied to the solid elements section of the bolt. 
 
• If the ATS method is used, it is also applied to the bolt loading 
procedure. 
 
• Bolt loading can be used with heat flow analysis, for both one-
way and fully coupled TMC analysis. 

10.8  Direct matrix input (Solution 601 only) 

• Advanced Nonlinear Solution supports direct matrix input usng 
the K2GG, B2GG, M2GG case control commands and the DMIG 
bulk data entry.

10.9  Parallel processing 

• Solution 601 supports parallel processing on all supported 
platforms, for the in-core and out-of-core sparse solvers. 
 
• Solution 701 also supports parallel processing on all supported 
platforms. 
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Contact all around if needed

Figure 10.7-2: Different bolt modeling techniques

(a) Bolt modeled with bolt element only (b) Bolt element used only for bolt shank

(c) Bolt element only used for cutout section of bolt shank

Contact at top and bottomNo contact needed

Constraints

Constraints

Shell elements or rigid surface

Bolt
element

Solid elements

One or more bolt elements One or more bolt elements

 
 
 

• Parallelized assembly of the global system matrices is supported 
on all platforms except for the 32-bit Windows platform. 
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• To benefit from parallel element assembly, groups of elements 
with the same property ids must be divided into subgroups. The 
number of subgroups should be equal to or greater than the number 
of processors (preferably a multiple of the number of processors). 
This is set via the NSUBGRP parameter in NXSTRAT. 

10.10  Usage of memory and disk storage 

Solution 601 
Depending on the size of the problem and the memory allocated to 
Solution 601, it can perform the solution either in-core (entirely 
within real or virtual memory) or out-of-core (reading from and 
writing to disk files). Whenever possible the solution is performed 
in-core. 
 
• The program memory usage is divided into two parts: 
 
f memory usage not considering the equation solver 
f memory usage of the equation solver 

 
Each of these parts can be performed in-core or out-of-core, as 
described below. 

 
• Memory usage not considering the equation solver: There are 
two options: 
 
f The global system matrices and element information are all 
stored in-core (IOPTIM=3) . 
 
f The global system matrices are stored in-core, and the 
element information is stored out-of-core (IOPTIM=2).  

  
 The program automatically chooses the appropriate option 
based on the size of the problem and the available memory. The 
chosen option is reported in the .f06 file as the value of IOPTIM. 
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• Memory usage of the equation solver 
 
f Sparse solver and 3D-iterative solver: Each of these solvers 
can either run in-core or out-of-core. The program chooses 
whether the solver runs in-core or out-of-core, based on the size 
of the problem and the available memory.  
 
f Iterative multi-grid solver. The solver always runs in-core. 
The out-of-core solution procedure would take an unreasonably 
long time in most cases.  

 
Solution 701 
Solution 701 can only run in-core. Enough memory must be 
provided. 
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Additional reading 
 

This section lists some references related to Solution 601 and 701. 
 
Books 
K.J. Bathe, Finite Element Procedures, Prentice Hall, 1996. 
 
D. Chapelle and K.J. Bathe, The Finite Element Analysis of Shells - 
Fundamentals, Springer, 2nd ed, 2011. 
 
M.L. Bucalem and K.J. Bathe, The Mechanics of Solids and 
Structures - Hierarchical Modeling and the Finite Element 
Solution, Springer, 2011. 
 
Web 
Additional references, including downloadable papers, can be 
found at the MIT web site of Prof. K. J. Bathe: 
 
http://meche.mit.edu/people/faculty/index.html?id=10 
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Constraint-function method, 199, 203 
Contact algorithm, 202, 206 
Contact analysis features, 217 
Contact birth/death, 213 
Contact compliance, 217 
Contact damping, 220, 233 
Contact detection, 219 
Contact oscillations, suppressing, 219 
Contact pairs, 192 
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Contact surface compliance, 211 
Contact surface depth, 208 
Contact surface offsets, 206 
Contact surfaces, 189, 191 
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convergence, 230 
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356 
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conditions, 134 
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Deformation-dependent distributed 
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Direct matrix input, 376 
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DMIG, 376 
Dynamic analysis, 323, 328 

E 

Effective plastic strain, 123 
Elastic-creep material models, 126 
Elastic-isotropic material model, 108, 

110 
Elastic-orthotropic material model, 

108, 110 
3-D solid elements, 111, 112 

Elasto-plastic material model, 119 
Element birth/death, 298, 365 
Element death due to rupture, 371 
Element locking, 56 
Elements 

2-D solid, 14, 57, 58 
3-D solid, 14, 68 
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concentrated mass, 89 
dampers, 14, 78 
gap, 88, 89 
general, 78 
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other, 88 
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rod, 14 
R-type, 14, 83 
scalar, 14, 78 
shell, 14, 33 
solid, 14, 68 
springs, 14, 78 
surface, 14, 57 

Enforced displacements, 284, 285 
Enforced motion, 284 
Engineering strains, 94, 97 
Engineering stresses, 94, 97 
Equilibrium iterations 

full Newton method, 299 
Explicit dynamic analysis, 337 
Exponential creep law, 133 
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Five degrees of freedom node, 45 
Formulations for 

2-D solid elements, 64 
3-D solid elements, 75 
rod elements, 22 
shell elements, 42 

Fourier number, 352 
Fourier's law, 345 
Friction 

basic models, 214 
pre-defined models, 214 

Friction delay, 213 
Full Newton iterations, 299 

line searches, 299 

G 

Gap element, 88, 89 
Gap override, 209 
Gasket material model, 172 
General elements, 78 
Green-Lagrange strains, 95, 97 

H 

Heat flux boundary load, 295 
Heat transfer materials, 187 
Hermitian beam elements, 23 
Holzapfel model for finite strain 

viscoelasticity, 158 
Hyperelastic material models, 138 
Hyper-foam material model 

3-D analysis, 147 
axisymmetric analysis, 147 
plane strain analysis, 147 
selection of material constants, 147 

I 

Implicit time integration, 323 
trapezoidal rule, 325, 328 

Improperly supported bodies, 232 
Incompatible modes finite elements, 

63, 73 
Inelastic deformations, 101 
Inertia loads, 279 
Initial conditions, 348, 362 
Internal heat generation, 296 
Isotropic hardening, 119 
Iterative multi-grid solver, 331 
Iterative thermo-mechanical coupling 

heat transfer between contacting 
bodies, 360 

internal heat generation, 360 
surface heat generation due to 

frictional contact, 360 

K 

Kinematic hardening, 119 
Kirchhoff stresses, 98 

L 

Large displacement formulation, 22, 
27, 42, 108, 125 

Large displacement/large strain 
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formulation, 26, 64, 75, 95, 121, 
138 

Large displacement/large strain 
kinematics, 184 

Large displacement/small strain 
formulation, 26, 64, 75, 94, 121, 
127 

Large displacement/small strain 
kinematics, 184 

Large strain analysis 
ULJ formulation, 103 

LDC method, 306, 315 
Limiting maximum incremental 

displacement, 234 
Line elements, 14, 21 
Line search, 299, 300 
Linear dynamic analysis, 323 
Linear formulation, 42, 65, 75, 108 
Linear static analysis, 297, 341, 342 
Loading 

centrifugal, 279, 280 
concentrated, 274 
inertia, 279 
mass-proportional, 279, 282 

Logarithmic strains, 97 
Low speed dynamics, 302 

M 

Mass elements, 14, 78 
Mass matrices for 

2-D elements, 66 
shell elements, 53 

Mass matrix, 326, 339 
Mass scaling, 344 
Mass-proportional loads, 279, 282 
Material models, 91 

Arruda-Boyce, 144 
elastic-creep, 126 
elastic-isotropic, 108, 110 
elastic-orthotropic, 108, 110 
elasto-plastic, 119 

gasket, 172 
hyperelastic, 138 
Mooney-Rivlin, 140 
Mullins effect, 167 
nonlinear elastic, 113, 117 
orthotropic conductivity, 187 
plastic-bilinear, 119 
plastic-creep, 126 
plastic-multilinear, 119 
Shape Memory Alloy, 176 
SMA, 176 
Sussman-Bathe, 148 
temperature-dependent elastic, 124 
thermal elasto-plastic, 126 
thermal isotropic, 124 
thermal orthotropic, 124 
thermal strain effect, 156 
viscoelastic, 184 
viscoelastic effects, 158 

Material models for 
2D solid elements, 64 
2-D solid elements, 64 
3-D solid elements, 74 
rod elements, 22 
shell elements, 42 

Materially-nonlinear-only 
formulation, 42, 65, 75, 121, 125, 
127, 184 

Matrices for 
3-D solid elements, 76 
beam elements, 33 

Memory allocation, 330 
in-core solution, 378, 379 
out-of-core solution, 378 

Mesh glueing, 289 
MITC, 36 
Mixed Interpolation of Tensorial 

Components, 36 
Mixed-interpolated finite elements, 

62, 71 
Mixed-interpolation formulation, 122, 



 Index 
 

 
 
Advanced Nonlinear Solution ⎯ Theory and Modeling Guide 385 

141 
Modeling of gaps, 118 
Mooney-Rivlin material model, 140 

3-D analysis, 141 
axisymmetric analysis, 141 
plane strain analysis, 141 
plane stress analysis, 140 
selection of material constants, 142 

Mullins effect, 167 
Multilayer shell elements, 50 

N 

Nominal strains, 97 
Nonconvergence, 312, 314 
Nonlinear dynamic analysis, 328 
Nonlinear elastic material model, 113, 

117 
Nonlinear static analysis, 298 

selection of incremental solution 
method, 314 

Non-positive definite stiffness matrix, 
330 

Numerical integration for 
2-D solid elements, 65 
3-D solid elements, 76 
beam elements, 30 
rod elements, 22 

O 

O.R.N.L. rules for cyclic loading 
conditions, 134 

Ogden material model 
selection of material constants, 144 

Orthotropic conductivity material 
model, 187 

P 

Parallel processing, 376 
Penetration depth, 353 
Plastic strains, 130 

Plastic-bilinear material model, 119 
Plastic-creep material models, 126 
Plastic-multilinear material model, 

119 
Positive definite stiffness matrix, 297 
Post-collapse response, 306 
Power creep law, 133 
Pre-defined friction models, 214 
Pressure loads 

deformation-dependent, 277 

R 

Radiation boundary condition, 293 
Rayleigh damping, 327, 328, 339 
Reactions, 371 
Recommendations for use of 

shell elements, 56 
Restart, 362 
Restart with contact, 220 
Rigid elements, 83 
Rigid target contact algorithm, 235 
Rigid target method, 202, 235 
Rod elements, 21 

formulations, 22 
material models, 22 
numerical integration, 22 

R-type elements, 14, 83 
Rupture conditions, 124 

S 

Scalar elements, 14, 78 
Segment method, 202 
Shape Memory Alloy, 176 
Shell elements, 14, 33 

4-node, 56 
basic assumptions in, 36 
composite, 50 
director vectors, 36 
formulations, 42 
locking, 56 



Index 
 

 
 
386 Advanced Nonlinear Solution ⎯ Theory and Modeling Guide 

mass matrices, 53 
material models, 42 
MITC, 56 
multilayer, 50 
nodal point degrees of freedom, 43 
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